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Nuclear data is of fundamental importance in
nuclear science and engineering
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1. Importance of nuclear data for
advanced reactors




Nuclear data is necessary for reliable modeling and simulation
of the next generation of nuclear reactors

Incident neutron data / ENDF/B-VII.1 /| MT=18 : (z,fission) / Cross section

100000 +

—— Pu239
—— U235

10000 +
1000 -

100 4+

Cross-section (b)

+ + + + + + + + + + + +
1E1 1E10 1E9 1E8 ET 1ES 1ES 1E4 0001 001 01 1 10

Incident energy (MeV)

TRANSATOMIC

g,OAK RIDGE

National Laboratory




The problem of extrapolating nuclear data to new designs
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Nuclear data effecting reactor design (1/2)
Traveling Wave Reactor

Traveling Wave Reactor (TWR)

Nuclear data uncertainty dominates:

Equipment Hatch Containment
. . . i Dome
= Beginning-of-Life (BOL) k¢ pipesseé’r?é“éaﬁ’;rﬁﬁli‘e?\

Large and Small
Rotating plugs

- Coolant temp. feedback Reactor Head

Thermal Shield Intermediate

d DO p p|el‘ feed baCk Heat Exchangers
In Vessel Fuel (4)
Handling Machine
- Control rod worth Upper Interal T
Structure 8 S Vessel

- Void worth - -

P”ma%f::;"“(‘g - \ Reactor Core & Core

Support structure

Tém\

g,OAK RIDGE

National Laboratory




Nuclear data effecting reactor design (2/2)
Molten Chloride Fast Reactor
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Importance of angular distribution nuclear data
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2. Uncertainty in differential nuclear data




We cannot solve the cross sections from first principles
because the nuclear potential, V(r), is not well understood!

hZ
—-—V*+ V(r)] Y(r) = EY(r)

2m

[—

238 . 238 . 238 .
U Cross Section U Cross Section U Cross Section

— Point &

oy oy oy —— Multigroup o
le+04 E—T—T 7T T T T T T lc+00: T T T T T
le+03 = —
le+02 = — 3
e 1 ‘
|
M |
le+01 5 E
| . .

w

le-02
le+00 £
E ! Ll L
T, le-03 . I . L . 1e-03 L
le le+01 “Hevo1 le+02 1e+03 le+04 “Yexoa 1e+05 1e+06 1e+07
Energy(ev) Energy(ev) Energylev)

Thermal Resonance range Fast

_#‘,OAK RIDGE

National Laboratory




Experiments to measure cross sections are complex
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Nuclear data measurements come with uncertainties
Nuclear data evaluation come with more uncertainties
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Nuclear data uncertainties are not certain

Fig. Na-23 fapture
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3. Propagated uncertainty to integral
applications
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1.040 - Variation in C/E Values is Much Less
Than Predicted by ENDF/B Covariances
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The response from the European nuclear data community
to large propagated uncertainties
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The US nuclear data community has (generally) increased uncertainties in the new library (red)
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The current official guidance from the US nuclear data center

Comments about the covariance in current ENDF evaluations

1. The covariance data in the ENDF evaluations represents uncertainties and correlations in
differential data.

2. The use of this covariance to calculate uncertainties for integral quantities such as Keff will
usually result in an overestimate of the uncertainty. That said, comparisons to integral data are
essential during the evaluation process and users should not be surprised if the *mean value*
nuclear data allow for the accurate prediction of Keff, even if the covariances to not reflect this
consideration.

3. The recommended methodology to overcome this problem is to adjust the covariance to add
information from set of integral data that represents the physics of the system for which the
adjusted covariance will be used.

4. More information on this topic: https://www.oecd-nea.org/science/wpec/sg33/

5. CSEWG is currently studying the best covariance representation for future releases.
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There are minimum bounds on realistic uncertainty estimates
and adjustment methodologies often violate these

(5) The conservative bound of PUBs is close to the
ENDF/B-VIII.0 evaluated uncertainties.
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The problem of too small uncertainties on differential data
and too large uncertainties on integral data

Nuclear data uncertainties are in danger of Nuclear data uncertainties are too large to
being smaller than what can be measured reflect how well we actually know critical
experimentally systems
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4. Have your cake and eat it too:
nuclear data correlations




Have your cake and eat it too: solving the discrepancy with nuclear data correlations

We cannot experimentally measure nuclear data to precision below 1%,
ov > 1%, 50'f > 1%

But, only 1% uncertainty in v results in 1% uncertainty in k¢, (more than $1 of reactivity),

_ (VE1%) Iy
=—

ko — 1% uncertainty in k.,

However, the ability to predict k.rr with better accuracy than 1% does not imply
the knowledge of the cross sections to better than 1%.

It only says that we know the integral of the cross sections (in the appropriate spectra)
to better than 1%.
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1.6
Have your cake and eat it too: solving the Ll )
discrepancy with nuclear data correlations |
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Through a careful examination of nuclear data correlations (energy, reaction, isotope),
propagated uncertainties on well known systems can be small
and large for systems without vast validation data
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