MAVRIC/Monaco Neutron Activation Simulations with Critical Sources

Thomas M Miller 2017 SCALE Users' Group September 27, 2017

ational Laboratory

Overview

- Introduction
- KENO and MAVRIC/Monaco input requirements
- Discussion of photons from critical sources
- Example results
 - ORNL Pool Critical Assembly (PCA), thanks to Bruce Patton
 - SILENE, assisted by Cihangir Celik
- Summary and conclusions
- Also, thanks to Douglas Peplow I stole about half of this presentation from training slides he created

Introduction

- This capability makes it easy to simulate a critical source with Monaco
 - Coupling between KENO-VI and Monaco
 - KENO-VI writes mesh tally of fission neutron production
 - Monaco reads mesh tally data as fission neutron source
- Capability added to SCALE 6.0
- Primary reason for development of this capability
 - 3D Criticality Accident Alarm System (CAAS) analysis
- 3D replacement of CSAS1X
 - XSDRNPM eigenvalue simulation saves energy and angular dependent leakage
 - Leakage spectrum fixed source of second XSDRNPM simulation

Coupling between KENO-VI and Monaco

- KENO-VI (through CSAS6 sequence, MG or CE)
 - Calculates k_{eff}
 - Calculates $\overline{\nu}$
 - Creates "fissionSource.3dmap"
- MAVRIC Utility: mt2msm converts mesh tally to mesh source
- MAVRIC
 - Uses "fissionSource.msm" as source
 - Transports neutrons and photons
 - Region tallies, point detector tallies, mesh tallies
 - Can use CADIS and FW-CADIS variance reduction

KENO-VI Criticality Calculation

Tell KENO-VI to store fissionSource.3dmap

```
' Parameters Block
'______
read parameters
...
cds=yes **or** cds=1
' cds=# if you specify more than one grid geometry
end parameters
```

Specify the grid geometry for fissionSource.3dmap

KENO-VI Results

- KENO-VI calculates $\bar{\nu}$ and stores it in a file kenoNuBar.txt
- Use the Mesh File Viewer or Fulcrum to visualize the fission source neutron distribution
 *.3dmap

MAVRIC Utility: mt2msm

Convert a *.3dmap into a *.msm file

Mesh Source Map

MAVRIC Shielding Calculation

Use the fissionSource.msm

```
_____
Source Block - for 1e18 fissions
read sources
   src 1
       meshSourceFile="fissionSource.msm"
          origin x=280 y=300 z=100
       fissions=1.0e18
         nu-bar=2.6
   end src
end sources
read parameters
    . . .
' turn off neutron multiplication, turn on photon production
   fissionMult=0 secondaryMult=2
end parameters
```

Use importance map block for biasing. MAVRIC will create importance map and biased source using its cross section library group structure.

Neutron Activation Response Functions

response 41

title="Cross section from the library"
material=7 ZAID=92235 MT=18
end response

Or

```
response 46
   title="Cross section from the library"
   material=7 MT=18 macro
end response
```

Or

```
response 52
   title="Cross section from the library"
   material=8 nuclide=U-235
      reaction=fission macro
end response
```


Response 41: Microscopic cross section for material 7 ID 92235

Tally Examples – Neutron Activation Usually a Region Tally

```
read tallies
pointDetector 7
neutron
locationID=2
responseID=9029
end pointDetector
```

```
regionTally 8
    title="most important region in problem"
    photon unit=2 region=8
    responseIDs 24 30 end
end regionTally
```

```
meshTally 1
    title="Mesh Tally with two responses"
    photon gridGeometryID=1
    responseIDs 24 30 end
end meshTally
```

end tallies

Common Items: KENO-VI and MAVRIC

Cross Section Library

- Can be the same, can be different
- KENO-VI fissionSource group structure is converted when loaded by MAVRIC
- Materials
 - Can be the same, can be different
- Geometry
 - Can be the same, can be different
 - Origins can be offset, but not rotated
- Mesh grid
 - Can be the same, can be different
 - KENO-VI fissionSource grid geometry is converted when loaded by MAVRIC

Optional Fission Photons

- To model fission photons, the user needs
 - Keyword secondaryMult>0 in the parameters block
- This is necessary because
 - KENO knows nothing about photons
 - Fission photon production can not always be fully correlated to fission events with ENDF/B-VII.1 (and earlier) data
- Fission photon production data for U-235 (ENDF/B-VII.1)
 - Neutrons <= 1.09 MeV that cause fission (MT 18) produce photons via MT 18 production channel
 - Neutrons > 1.09 MeV produce no photons via MT 18
 - Photon production for Neutrons > 1.09 MeV all via MT 3, non-elastic neutron interactions

Example 1: ORNL Pool Critical Assembly (PCA, Bruce Patton)

- The PCA was one of ORNL's "swimming pool" reactors over in the 3000 area (next to the graphite reactor)
- In the same pool as the Bulk Shielding Reactor (BSR)
- Could use Material Test Reactor (MTR) AND Oak Ridge Research Reactor (ORR) fuel elements
- Could operate up to 10 kW
- In 1981 NRC published a report on LWR Pressure Vessel Surveillance Dosimetry experiments at the PCA with the Pressure Vessel Wall Benchmark Facility (PVWBF)
- In 1997 Igor Remec published an ORNL TM providing a benchmark model of these experiments

lational Labo

Images of the PCA PVWBF

Compare Simulation and Measurement (Some of the "worst" results that are actually very good)

²³⁷ Np(n,f) ¹³⁷ Cs Results						
Experiment tube position	Distance from core (cm)	Experimental fission equivalent flux	MAVRIC/Monaco fission equivalent flux VITAMIN-B7	VITAMIN-B7 C/E ratio		
A1	12.0	6.64E-06	6.92E-06 (0.55%)	1.04		
A3	29.7	2.27E-07	2.66E-07 (0.61%)	1.17		
A4	39.5	9.27E-08	9.69E-08 (0.46%)	1.05		
A5	44.7	5.18E-08	5.37E-08 (0.45%)	1.04		
A6	50.1	2.70E-08	2.78E-08 (0.54%)	1.03		
A7	59.1	7.25E-09	8.12E-09 (1.3%)	1.12		

¹¹⁵ In(n,n') ^{115m} In Results						
Experiment tube position	Distance from core (cm)	Experimental fission equivalent flux	MAVRIC/Monaco fission equivalent flux VITAMIN-B7	VITAMIN-B7 C/E ratio		
A1	12.0	5.61E-06	5.92E-06 (0.74%)	1.06		
A2	23.8	6.06E-07	6.49E-07 (0.75%)	1.07		
A3	29.7	1.99E-07	2.26E-07 (0.84%)	1.14		
A4	39.5	5.87E-08	6.63E-08 (0.63%)	1.13		
A5	44.7	2.76E-08	3.08E-08 (0.64%)	1.12		
A6	50.1	1.17E-08	1.34E-08 (0.81%)	1.15		

Introduction to SILENE

- Annular core
 - Internal cavity diameter 7 cm
 - Outer fuel diameter 36 cm
 - Typical critical height ~35 45 cm
- Uranyl Nitrate fuel Solution
 - − ~93% ²³⁵U
 - ~71 g of uranium per L
- Power level ranges from 10 mW to 1000 MW
- Three operating modes
 - Single pulse
 - Free evolution
 - Steady State

Photographs of bare SILENE and pulse 1 cell configuration

Experimental configuration

Pulse 1

- SILENE bare (no reflector)
- Collimator A unshielded
 - Full set of neutron activation foils
 - Valduc Al₂O₃, ORNL HBG & DXT TLDs
 - CIDAS and Rocky Flats CAAS

Scale model of pulse 1 geometry

KENO-VI Calculation

Quantity	Value	Uncertainty
k _{eff}	1.02320	0.00002
$ar{ u}$	2.43755	2.51e-7

SILENE critical height ~ 37.36 cm

MAVRIC/Monaco Calculation (Importance map)

Compare Simulation and Measurement (Some of the best results)

Summary and Conclusions

- "Shielding" simulations with a critical source are problematic if variance reduction is needed
 - Initial reaction by some is to apply variance reduction to an eigenvalue simulation
 - However, one must be careful to not interfere with convergence of the fission source
 - In other words, you cannot use source biasing
- Coupling KENO-VI and MAVRIC/Monaco allows you to
 - Accurately calculate a fixed sourced for a critical system
 - Apply CADIS or FW-CADIS
- At this point KENO, like ORIGEN, is just one more subroutine in SCALE to generate sources for MAVRIC/Monaco

