Gabriel Perez

Research Hydrologist

Phone +1 (629)-867-09-17

E-mail perezmesagj@ornl.gov

<u>Google Scholar</u>, <u>LinkedIn</u> <u>OrcID</u>, <u>ResearchID</u>

Research Hydrologist with expertise in numerical modeling, processing of radar and satellite remote sensing data, and stochastic hydrological analysis. My research is focused on developing and using physically-based hydrological models to dissect the roles of rainfall and land surface process interactions in producing surface and subsurface flow at a wide range of temporal and spatial scales.

Research Interests

Hydrologic modeling; Hydraulic modeling; High performance computing, Hydroclimate impact assessment, Flood Frequency Analysis; Statistics of extremes; Flood risk estimation; Stochastic modeling; River network structures; Remote sensing; machine learning; Groundwater modeling; Hyporheic exchange.

Education

2019	Ph.D. Hydraulics and Water Resources The University of Iowa - Iowa City, IA, U.S. Thesis: "Advancing Multiple Aspects of a Nonlinear Geophysical Theory of Floods"
2015	M.Sc. Water Resources Universidad Nacional de Colombia - Medellin, Colombia Thesis: "Proposed Methodology for Estimating Flood Areas with Scarce Information Through Geomorphometric Descriptors Derived from Digital Elevation Models"
2012	B.S. Civil Engineering Universidad Nacional de Colombia - Medellin, Colombia Thesis: "Analysis of the Confluence Dona Maria – Medellin River based on a Hydraulic Simulation and Monte Carlo Simulation."

Professional Experience

2023 - Current Postdoctoral Research Associate

Oak Ridge National Laboratory, Oak Ridge, U.S.

Development of integrated surface/subsurface simulation tools for watershed hydrology and reactive transport.

2019 - 2022	Postdoctoral Scholar Vanderbilt University, Nashville, U.S.
	Development of hydrological models; Modeling of groundwater systems; Spatial and temporal variability of flood events; Rainfall dynamics.
2015 - 2019	Research Assistant Iowa Flood Center, University of Iowa, Iowa City, U.S.
	Data analysis of flood events; Hydrological modeling; Radar Rainfall data processing; Stochastic transposition of rainfall events.
2012 - 2014	Civil Engineer Perez Mesa Ingenieros SAS, Medellin, Colombia
	Design of water supply systems; Sewage networks; Hydrologic and hydraulic studies; Water quality analysis; Integrated watershed management plans.
2011	Assistant Civil Engineer W&W Ingeniería Ltda, Medellin, Colombia
	Design of storm drains and sanitary sewers
2010 - 2011	Research Assistant Universidad de Antioquia, Medellin, Colombia
	Hydrologic and Hydraulic studies

Teaching Experience

2022 Spring	Instructor, Water Resources Engineering Vanderbilt University, Nashville, U.S.
2018 Spring and Fall	Teaching Assistant, Fluid Mechanics The University of Iowa, Iowa City, U.S.
2017 Spring and Fall 2018	Teaching Assistant, Groundwater The University of Iowa, Iowa City, U.S.
2017 Spring	Teaching Assistant, Water Resources Design The University of Iowa, Iowa City, U.S.
2012 - 2014	Instructor, Introduction to Geographic Information Systems The Universidad Nacional de Colombia, Medellin, Colombia.

Publications

Papers Published in Refereed Journals

- Krajewski, W.F., Otto, L., Vishwakarma, S., and Perez, G., (2023) Revisiting Turcotte's approach: Flood frequency analysis. Journal of Stochastic Environmental Research and Risk Assessment. (In press)
- Grant, S.B; Rippy, M; Birkland, T; Schenk, T; Rowles, K; Aminpour, P; Kaushal, S; Vikesland, P; Berglund, E; Gomez-Velez, J; Hotchkiss, E; **Perez, G**; Zhang, H; Armstrong, K; Bhide, S; Krauss, L; Maas, C; Mendoza, K; Shipman, C; Zhang, Y; Zhong, Y. (2022) "Can Common Pool Resource theory catalyze stakeholderdriven solutions to the freshwater salinization syndrome?" Environmental Science & Technology, <u>https://doi.org/10.1021/acs.est.2c01555</u>
- Perez, G., Gomez-Velez. JD., Chen, X., Scheibe, T., Chen, Y., Bao, J. (2021) Identification of Characteristic Spatial Scales to Improve the Performance of Analytical Spectral Solutions to the Groundwater Flow Equation. Water Resources Research, 57(12) <u>https://doi.org/10.1029/2021WR031044</u>
- Perez, G., Gomez-Velez, JD., Mantilla, R., Wright, D., Li, Z. (2021) The Effect of Storm Direction on Flood Frequency Analysis. Geophysical Research Letters, 48(9):1–10. <u>https://doi.org/10.1029/2020GL091918</u>
- Quintero, F., Krajewski, W. F., Muste, M., Rojas, M., Perez, G., Johnson, S. J., Anderson, A., Hunemuller, T., Cappuccio., B., & Zogg, J. (2021). Development of synthetic rating curves: A case study in Iowa. Journal of Hydrologic Engineering, 1–12. <u>https://doi.org/10.1061/(ASCE)HE.1943-5584.0002022</u>
- Perez, G., Mantilla, R., Krajewski, W. F., & Quintero, F. (2019). Examining Observed Rainfall, Soil Moisture, and River Network Variabilities on Peak Flow Scaling of Rainfall-Runoff Events with Implications on Regionalization of Peak Flow Quantiles. Water Resources Research, 2019WR026028. <u>https://doi.org/10.1029/2019WR026028</u>.
- Perez, G., Mantilla, R., Krajewski, W. F., & Wright, D. B. (2019). Using Physically Based Synthetic Peak Flows to Assess Local and Regional Flood Frequency Analysis Methods. Water Resources Research, 2019WR024827. <u>https://doi.org/10.1029/2019WR024827</u>.
- Perez, G., Mantilla, R., & Krajewski, W. F. (2018). Estimation of Historical-Annual and Historical-Monthly Scale-Invariant Flow Duration Curves with Implementation for Iowa. Journal of Hydrologic Engineering, 23(12), 05018021. <u>https://doi.org/10.1061/(ASCE)HE.1943-5584.0001707</u>.
- Perez, G., Mantilla, R., & Krajewski, W. F. (2018). The Influence of Spatial Variability of Width Functions on Regional Peak Flow Regressions. Water Resources Research, 54(10), 7651–7669 <u>https://doi.org/10.1029/2018WR023509</u>.

Book Chapters

 Perez, G., Mantilla, R., & Krajewski, W. F. (2018). Spatial patterns of peak flow quantiles based on power-law scaling in the Mississippi River basin. In A. A. Tsonis (Ed.), Thirty Years of Nonlinear Dynamics in Geosciences. Springer. <u>https://doi.org/10.1007/978-3-319-58895-7_23</u>

Data Release

 Ikard, S.J., Rucker, D.F., Carroll K.C., Adams, R.F., and Perez, G., (2022), Waterborne Self-potential Data, Surface-water Temperature and Conductivity Logging data, and Electric Resistivity Tomography Data Measured at East Fork Poplar Creek, Oak Ridge, Tennessee, January-March 2022, U.S. Geological Survey data release, <u>https://doi.org/10.5066/P9BAW75G</u>

Papers in Preparation

- Mantilla, R., **Perez, G.**, Velasquez, N., Wright, DB., Yu, G., Regional Flood Frequency Analysis Using Physics-based Hydrologic Modeling. In preparation for Water Resource Research.
- **Perez, G**., Gomez-Velez, J. D., Chen, X., Scheibe, T. The Directional Unit Hydrograph Method: Connecting Streamflow Response to Storm Direction. In preparation for Journal of Hydrology.
- **Perez, G**., Gomez-Velez, J. D., S. B. Grant. A Parsimonious Model for Flow in Sanitary Sewer Networks: Revisiting the Width Function Instantaneous Unit Hydrograph. In preparation for Water Research.
- **Perez, G.**, Gomez-Velez. JD., Chen, X., Scheibe, T., Chen, Y., Bao, J. Spectral solutions of the groundwater flow equation for the characterization of hyporheic exchange: How accurate is the pumping model? In preparation for Water Resources Research.
- Perez, G., Gomez-Velez. JD., Chen, X., Scheibe, T., Chen, Y., Bao, J. Multiscale characterization of hyporheic exchange along the Columbia River. In preparation for Water Resources Research.
- Gomez-Velez, J. D., **Perez, G**., Y. Zhang, S. B. Grant. Water Mixing in Sanitary Sewer Systems: Implications for the Interpretation of Water Quality Observations. In preparation for Environmental Science & Technology.
- Zhang, Y., **Perez, G**., Gomez-Velez, J. D. Using Deep Learning to Characterize Rainfall-derived Inflow and Infiltration in Sanitary Sewer Systems. In preparation for Water Resources Research.
- Gonzalez-Duque, D., Gomez-Velez, J.D, **Perez, G.**, Harvey, J., Chen, X., and Scheibe, T. Networks with Exchange and Subsurface Storage (NEXSS In preparation for Journal for Advances in Modeling Earth Systems (JAMES).
- Gomez-Velez, J.D, Wang, C., Gonzalez-Duque, D., **Perez, G.**, Harvey, J., Schwarz, G., Konrad, C., Scott, D., Chen, X., and Scheibe, T. Estimating Grain Size for Streambeds Across the Conterminous US. In preparation for Water Resources Research.

Honors and Awards

- Nomination to STAHY Best Paper Award (2021).
- Best Case Study Award Journal of Hydrologic Engineering (2020).
- Graduate College Post-Comprehensive Research Award (Spring 2018 semester).
- CEE Outstanding TA for Water Resources Engineering (Fall 2017 semester).
- Outstanding Student Scholarship Universidad Nacional de Colombia M.Sc. Hydraulic resources (2012-2014).

Conference and Seminar Presentations

- Perez, G., Gomez-Velez, J., Chen, X., Scheibe, T., Chen, Y., & Bao, J. A Systematic Assessment of the Pumping Model as a Tool to Understand and Upscale Hyporheic Exchange Processes - AGU Fall Meeting 2022.
- **Perez, G.,** Mantilla, R., Krajewski, W., & Gomez-Velez, J. Insights on Physical Controls and Statistical Effects on the Interpretation of Peak Flow Scaling from a Mesoscale Basin to the Mississippi River Basin - AGU Fall Meeting 2022.
- Gomez-Velez J., Perez G., Grant S., Mendoza, K., Rippy, M., & Vikesland, P. A novel modeling framework to understand the fate and transport of salts in sanitary sewer systems - AGU Fall Meeting 2022.
- Shipman, C., Grant, S., Mendoza, K., Vikesland, P., Perez, G., Gomez-Velez, J., Rippy, M., Schenk T., & Birkland, T. The Potential Contribution of Household Detergents to Inland Freshwater Salinization - AGU Fall Meeting 2022.
- Ayers, J., Jing, W., Chen, M., Daugherty, E., **Perez, G.**, & Gomez-Velez, J., Effects of Nutrient Pollution and Urbanization on Diel Cycles and CO2 Emissions in Two Middle TN Streams AGU Fall Meeting 2022.
- Perez, G., & Gomez-Velez. J., Development of a Parsimonious Hydrological Model to Evaluate the Effect of Changes in Storm Tracks in Flood Events Under Future Climates. - AGU Fall Meeting 2021.
- Perez, G., Gomez-Velez, J., Chen, Y., Chen, X., Scheibe, T., & Bao, Ji., Analysis of Nested Hyporheic Flow Paths Using Analytical Spectral Solutions. GSA 2021.
- Mantilla, R., Velasquez, N., Perez, G., & Wright, D., Quantifying Sources of Uncertainty in Regional Flood Frequency Analysis Using Physics-based Hydrologic Modeling - AGU Fall Meeting 2021.
- Velasquez, N., Mantilla, R., **Perez, G.**, Wright, D., & Yu, G., A performance index based on hydrograph moments: A descriptor to identify strengths and shortcomings hydrological simulations AGU Fall Meeting 2021.
- Perez, G., Resonance in hydrologic systems: Detecting critical conditions that can exacerbate extreme floods during current and future climate. Emerging Scholar Seminar, Vanderbilt University, March 2021.
- Perez, G., Gomez-Velez, J., Mantilla, R., Wright, D., & Li,. Z., The Effect of Storm Direction on Flood Frequency Analysis Using Physically-Based Streamflow Simulations - AGU Fall Meeting 2020.
- Mantilla, R., Perez, G., Velasquez, N., Wright, D., & Yu. G., Insights from Physicsbased Hydrologic Models and Stochastic Storm Transposition into the Underlying Assumptions of Flood Quantile Regionalization Techniques - EGU General Assembly Conference, 2020.
- Mantilla, R., **Perez, G.**, Quintero, F., & Krajewski, W. F., A Physical Interpretation for Peak Flow Scaling of Rainfall-Runoff Events in Nested River Networks with Implications on Peak Flow Regionalization. EGU General Assembly 2019.
- Perez, G., Mantilla, R., & Krajewski, W. F., The influence of spatial variability of width functions on regional peak flow regressions. AGU Fall Meeting Abstracts, Washington D.C. 2018.

- Mantilla, R., **Perez, G.**, & Krajewski, W. F., Comparison of local and regional methods to estimate peak flow quantiles based on synthetic records. AGU Fall Meeting Abstracts, Washington D.C. 2018.
- Krajewski, W. F., Mantilla, R., **Perez, G.,** Comparison of local and regional methods to estimate peak flow quantiles based on synthetic records. STAHY, Australia-Adelaide 2018.
- Krajewski, W. F., Mantilla, R., **Perez, G.,** Temporal and spatial power laws of river peak flows and flood frequency estimation. AGU Fall Meeting Abstracts, New Orleans, 2017.
- Rodriguez-Gaviria, E. M., Perez, G., & Botero-Fernández, V. Methodological design for flood risk assessment at a local level using scare information. 6th International Conference on Flood Management, 1–12. 2011.

Affiliations

- American Geophysical Union
- American Society of Civil Engineers
- Geological Society of America

Participation in Courses and Seminars

- Certificate in College Teaching, Vanderbilt University, Fall 2021 Spring 2022
- SMAPVEX16 Research campaign, soil moisture and vegetation sampling, NASA, University of Iowa, August 2016.
- CUAHSI Watershed Science Master Class, University of Arizona's Biosphere 2 facility in Oracle, Arizona. January 2016.
- Course in water quality modeling in rivers and streams and its application to sanitation plans and managing spills. ACODAL, July 2012.
- XIX National seminar of hydraulics and hydrology and the first national forum on safety of dams. Bogota DC Colombia, March 2011.

Community Services

<u>Reviewer service:</u> Journal of Hydrology; Water Resources Research; Hydrology and Earth System Sciences; Advances in Water Resources; Hydrogeology Journal; Water; Journal of the American Water Resources Association.

<u>Conference</u>: Session chair of Groundwater-Surface Water Interactions: Integrating Physical, Biological, and Chemical Patterns and Processes Across Systems and Scales - AGU Fall Meeting 2022

Technical Skills

- <u>Programming Skills:</u> MATLAB, Python, R, PostgreSQL
- <u>Modeling experience:</u> WRF-Hydro, HEC-HMS, EPA-SWMM, Hillslope-Link-Model (HLM), EPANET, HEC-RAS, HEC-GeoRAS, COMSOL Multiphysics, MODFLOW.
- <u>Research Tools:</u> Linux, GitHub, ArcGIS pro, QGis, SAGA GIS, GRASS GIS, gv-SIG, AutoCAD.

Contact Information

Jesus Gomez-Velez, Oak Ridge National Laboratory Senior Research Scientist, Environmental Sciences Division gomezvelezjd@ornl.gov, +1 (615) 343-0319

Ricardo Mantilla, University of Manitoba Associate Professor, Civil Engineering ricardo.mantilla@umanitoba.ca, +1 (204) 474-8725

Daniel Wright, University of Wisconsin-Madison Associate Professor, Civil & Environmental Engineering danielb.wright@wisc.edu, +1 (608) 262-1978