Ian T. Greenquist, PhD

PO Box 2008, MS 6170 Oak Ridge, TN 37831-6170 greenquistit@ornl.gov

www.linkedin.com/in/itgreenquist www.ornl.gov/staff-profile/ian-t-greenquist

Executive Summary

My dream is to help solve global climate change by improving the performance, economics, and environmental impact of the nuclear energy industry. I am an expert in the development and use of fuel performance models for UO_2 , metallic fuels, and advanced fuel concepts; sensitivity and uncertainty analysis; and code coupling. I am hardworking, passionate, driven, and reliable. I believe in always being honest, in doing what is right, in trying new things, and in performing my duty. These attributes help me deliver quality results and give me a history of good relationships with employers and coworkers.

Skill Summary

- Expertise: fuel performance, nuclear materials, sensitivity and uncertainty analysis, multiphysics simulations
- Programming Languages: C++, Python, MATLAB
- Modeling Techniques: Finite Element, Phase Field, Monte Carlo
- Modeling Software: BISON, MARMOT, MOOSE, OpenMC, ANSYS, Aspen Plus, Simulink, ChemCAD
- Languages: English, Spanish

Education

•	Pennsylvania State University	State College, PA
	Doctor of Philosophy: Nuclear Engineering	8/2019
	GPA: 3.87	
٠	Brigham Young University	Provo, UT
	Bachelor of Science: Chemical Engineering	4/2015
	GPA: 3.42	
٠	Brigham Young University—Idaho	Rexburg, ID
	Associate of Applied Science: Engineering Technology	4/2012
	GPA: 3.41	

Experience

Oak Ridge National Laboratory	Oak Ridge, TN
R&D Associate Staff Member: Nuclear Fuels Analyst	1/2021–Present
• Evaluated risk of cladding burst and fuel release for very-high-burnup UO ₂ fuel rods	

- Analyzed the fuel performance of weapons-grade plutonium in metallic fast reactor fuel
- Fuel performance simulations predicting the behavior of uranium-molybdenum fuel in LWR reactors
- Completed the first comprehensive uncertainty quantification of BISON metallic fuel predictions
- Developed a novel nuclear fuel and completed preliminary reactor physics and heat transfer analyses
 Postdoctoral Research Associate: Nuclear Fuels Analyst
 7/2019–12/2020
- Fuel performance modeling of experimental reactors as part of Versatile Test Reactor project
- Developed 2 benchmark problems for testing and comparison of metallic fuel performance codes
- Implemented fuel performance models for U-Mo fuel and modeled the fuel in experimental conditions
- Wrote peer-reviewed papers, technical reports, presented research at conferences

Pennsylvania State University

Research Assistant

- Developed a mechanistic mesoscale sintering model based on the phase field method
- First-of-kind comparison of mesoscale sintering model to experimental data
- First-of-kind quantification of kinetic effects of dopants using only simulations
- First-of-kind mesoscale model of irradiation-enhanced densification within UO₂ nuclear fuel
- Created new techniques to generate initial conditions and measure density in simulations
- Contributed C++ code to MOOSE and MARMOT phase field application

Idaho National Laboratory

Nuclear Engineering Intern

- Developed benchmark phase-field simulation based on CALPHAD data
- Developed online phase field tutorial for new users of MOOSE framework
- Helped develop code to simulate grain-size effects on highly enriched nuclear fuels Chemical Engineering Intern
- Competed 2 projects to improve profitability, cleanliness, and flexibility of coal-fired power plants
- Assessed the potential of running pretreated biomass pellets in existing coal-fired power plants
- Analyzed physical and chemical properties of 8 types of biomass pellets and coal
- Constructed an Aspen Plus model of a Coal-fired power plant with attached Steam Electrolysis plant

Brigham Young University

Undergraduate Research Assistant

- Evaluated potential strategies for hybrid nuclear energy systems with oil and gas production systems
- Developed MATLAB application for model-predictive control and optimization applications
- Attended an invited session at a national laboratory on Nuclear Hybrid Energy Systems
- Wrote grant proposals, presentations, and reports

Upper-Division Math Tutor

- Tutored students in college math classes in principles, applications, and problem-solving strategies
- Specialized in advanced subjects: Multivariable Calculus, Linear Algebra, and Ordinary Differential Equations
- Planned and taught exam-review sessions
- Assisted with other math courses: College Algebra, Trigonometry, Calculus 1 and 2, Business Calculus

Select Publications

•	UO ₂ -liquid metal suspension fuel concept for enhanced passive safety of LWRs: A heat pipe case study	2022
	I. Greenquist	
	Nuclear Engineering and Design	
٠	Sensitivity and Uncertainty of the IFR-1 BISON Benchmark	2022
	I. Greenquist, J. J. Powers	
	Progress in Nuclear Energy	
٠	Metallic Fuel Performance Benchmarks for Versatile Test Reactor Applications (Invited)	2022
	J. Hirschhorn, J. J. Powers, I. Greenquist, R. T. Sweet, J. Hu, D. L. Porter, D. C. Crawford	
	Nuclear Science and Engineering	
٠	25 Pin BISON Fuel Performance Benchmark Case Based on the X430 Series of	2021
	Experiments	
	I. Greenquist, J. J. Powers	

Journal of Nuclear Materials

2

State College, PA 8/2015–5/2019

Idaho Falls, ID 5/2015-7/2015

5/2014-8/2014

Provo, UT

6/2013-4/2014

8/2012-4/2015

•	Development of a U-19Pu-10Zr Fuel Performance Benchmark Problem Based on the IFR-1 Experiment I. Greenquist, K. M. Cunningham, J. Hu, J. J. Powers, D. C. Crawford Journal of Nuclear Materials	2021
•	Analysis of the Impact of Fuel Microstructure on Irradiation-Enhanced Densification Using Grand Potential Simulations I. Greenquist, M. Tonks, Y. Zhang Annals of Nuclear Energy	2021
•	Research Needs for Uranium-Zirconium-Based Metallic Fuels A. Aitkaliyeva, M. Tonks, J. Hirschhorn, J. J. Powers, I. Greenquist, B. Beeler INL Technical Memo	2020
•	Grand Potential Sintering Simulations of Doped UO ₂ Accident-Tolerant Fuel Concepts I. Greenquist, M. Tonks, M. Cooper, A. Andersson, Y. Zhang Journal of Nuclear Materials	2020
•	Development of a Microstructural Grand Potential-Based Sintering Model I. Greenquist, M. Tonks, L. K. Aagesen, Y. Zhang Computational Materials Science	2020
•	Review of Sintering and Densification in Nuclear Fuels: Physical Mechanisms, Experimental Results, and Computational Models I. Greenquist, M. Tonks, Y. Zhang Journal of Nuclear Materials	2018