Debangshu Mukherjee

R&D Associate Scientist

Computational Sciences & Engineering Division

Oak Ridge National Laboratory

Ph: (865) 341-1680 (Office) / (617) 501-7316 (Cell) | Email: mukherjeed@ornl.gov ORNL Staff Website | Google Scholar | Github

Research Interests

ergy Materials

Quantitative structural and chemical understanding of inter-Quantitative Electron Imaging of Quantum & En-faces/defects/surfaces in quantum and energy materials with high-precision electron microscopy, across multiple temperature regimes.

Coupling Electron Microscopy with HPC

Analysis of gigabyte-scale datasets on high-performance compute clusters for fast and high precision strain mapping, ptychography and automated microscope operation.

Education

The Pennsylvania State University

Ph.D. in Materials Science & Engineering

Thesis advisor(s): Prof. Nasim Alem & Prof. Venkatraman Gopalan

6/2013 - 5/2018

Thesis title: Metrology of Ferroelectric Domain Walls with Scanning Transmission Electron

Microscopy

Boston University

M.S. in Materials Science & Engineering

Thesis advisor(s): Prof. Soumendra Basu & Prof. Siddharth Ramachandran Thesis title: Structured Semiconductor Fibers for Mid-Infrared Transmission 8/2011 - 5/2013

Indian Institute of Technology Kharagpur

B.Tech.(hons.), Metallurgical & Materials Engineering

M.Tech., Metallurgical Engineering

Thesis advisor(s): Prof. Sanat Kumar Roy & Prof. Shanker Ram

Thesis title: Synthesis and characterization of La_{0.66}Ca_{0.33}MnO₃ nanowires

7/2006 - 5/2011

Professional Experience

Staff Scientist (R&D Associate)

Computational Sciences & Engineering Division, Oak Ridge National Laboratory 06/2021 - Present

Postdoctoral Research Associate,

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 06/2018 - 04/2021

• Graduate Research/Teaching Assistant

Department of Materials Science & Engineering, The Pennsylvania State University 06/2013 - 05/2018

• Graduate Research/Teaching Assistant

Department of Materials Science & Engineering, Boston University

08/2011 - 05/2013

Awards and Honors

- MAS Postdoctoral Scholar Award, 2020
- · Dean's Fellowship, Boston University, 2011
- Best Bachelor's Thesis Award, IIT Kharagpur, 2010

Publications

- 14. Mukherjee D., Unocic R.R., Strain quantification of catalyst nanoparticles with 4D-STEM. Under review in JoVE
- 13. Miao L., Chmielewsk A., **Mukherjee D.**, Alem N., Picometer-precision atomic position tracking through electron microscopy. *Journal of Visualized Experiments*, e62164
- 12. Rimal G., Liu Y.,Schmidt C., Hijazi H., Skoropata E., Lapano J.M., **Mukherjee D.**, Unocic R.R., Sun Y., Brahlek M., Feldman L.C, Ramanathan S. and Oh S., Effective reduction of PdCoO₂ thin films via hydrogenation and sign tunable anomalous Hall effect. *Physical Review Materials*, 5(5):L052001
- 11. Zhang W., Mazza A.R., Skoropata E., **Mukherjee D.**, Musico B.L., Zhang J., Keppens V., Zhang L., Kisslinger K., Stavitski E., Brahlek M., Freeland J.W., Lu P. and Ward T.Z., Applying configurational complexity to the 2D Ruddlesden-Popper crystal structure. *ACS Nano* 14(10):13030-13037
- Lapano J.M., Mazza A.R., Li H., Mukherjee D., Skoropota E., Ok J-M., Miao H., Moore R.G., Ward T.Z., Eres G., Lee H-N and Brahlek M, Strong spin-dephasing in a topological insulator- paramagnet heterostructure. APL Materials 8(9):091113
- 9. Zhou X., Chen L., Sterbinsky G.A., **Mukherjee D.**, Unocic R.R. and Tait S.L.; Pt-ligand Single-atom Catalysts: Tuning Activity by Oxide Support Defect Density. *Catalysis Science & Technology*, 10(10):3353-3365
- 8. Mukherjee D., Gamler. J.T.L., Skrabalak S.E. and Unocic R.R.; Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction. *ACS Catalysis* 10(10):5529-5541
- 7. **Mukherjee D.**, Miao L., Stone G., and Alem N.; mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks. *Advanced Structural and Chemical Imaging* 6(1)
- 6. Brahlek, M., Rimal, G., Ok, J.M., **Mukherjee D.**, Mazza, A.R., Lu, Q., Lee, H.N., Ward, T.Z., Unocic, R.R., Eres, G. and Oh, S.; Growth of metallic delafossite PdCoO₂ by molecular beam epitaxy. *Physical Review Materials* 3(9):093401
- 5. **Mukherjee D.**, Prokhorenko S., Miao L., Wang K., Bousquet E., Gopalan V. and Alem N.; Atomic-scale measurement of polar entropy. *Physical Review B* 100(10):104102
- 4. Young J., Moon E.J., **Mukherjee D.**, Stone G., Gopalan V., Alem N., May S.J. and Rondinelli J.M.; Polar oxides without inversion symmetry through vacancy and chemical order. *Journal of the American Chemical Society* 139(7):2833-2841
- 3. Zhang H.T., Zhang L., **Mukherjee D.**, Zheng Y.X., Haislmaier R.C., Alem N. and Engel-Herbert R.; Wafer-scale growth of VO₂ thin films using a combinatorial approach. *Nature Communications* 6:8475
- 2. Azizi A., Eichfeld S., Geschwind G., Zhang K., Jiang B., **Mukherjee D.**, Hossain L., Piasecki A.F., Kabius B., Robinson J.A. and Alem N; Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. *ACS Nano* 9(5):4882-4890
- Sahu R.K., Mukherjee D., Tiwari J.P., Mishra T., Roy S.K. and Pathak L.C.; Influence of foreign Fe ions on wet chemical synthesis of Pt nanoparticle thin films at ambient temperature: in situ versus direct addition *Journal of Materials Chemistry* 19(37):6810-6815

Manuscripts in Preparation

- 3. **Mukherjee D.**, Yu H., Spendelow J., Cullen D.A. and Zachman M.J. *Visualizing strain across hundreds of catalyst nanoparticles with 4D-STEM*
- 2. **Mukherjee D.**, Lapano J.L., Rimal G., Lee H.N. and Brahlek M. *Effect of oxygen annealing on the PdCoO*₂ *film Al*₂O₃ *substrate interface*
- 1. **Mukherjee D.** and Unocic R.R. STEMTool: A Python based open source software suite for scanning transmission electron microscopy data analysis

Conference Presentations

- 12. Automated methods for improved characterization of alloy nanoparticle catalysts; **Microscopy & Microanalysis**, August 1-5, 2021, Virtual Conference.
- 11. Quantifying the projected unit cell size variation of off-axis PtCo catalyst nanoparticles through 4D-STEM; **Microscopy & Microanalysis**, August 1-5, 2021, Virtual Conference.
- 10. Building an edge computing infrastructure for rapid multi-dimensional electron microscopy; Microscopy & Micro-analysis, August 1-5, 2021, Virtual Conference.
- 9. Oxygen Annealing Driven Structural Evolution in PdCoO₂ Films Through Electron Microscopy; Microscopy & Micro-analysis, August 2-6, 2020, Virtual Conference.
- 8. Stemtools: An Open Source Python Toolkit for Analyzing Electron Microscopy Datasets; Microscopy & Microanalysis, August 2-6, 2020, Virtual Conference. (2020 MSA Postdoctoral Scholar Award)
- 7. 4D-STEM Data Acquisition, Analytics and Functional Material Property Extraction; Invited Talk at Materials Science & Technology, October 1-4, 2019, Portland, Oregon.
- 6. Investigation of Strain in Core@Shell Electrocatalysts with ADF-STEM and 4D-STEM Scanning Nanodiffraction; Microscopy & Microanalysis, August 4-8, 2019, Portland, Oregon.
- 5. 4D-STEM Differential Phase Contrast Microscopy Across Ferroelectric Domain Walls; Microscopy & Microanalysis, August 5-9, 2018, Baltimore, Maryland.
- 4. Statistical Measurement of Polar Displacements in Complex Oxides; Microscopy & Microanalysis, August 6-10, 2017, St. Louis, Missouri.
- 3. Aberration Corrected STEM imaging of ferroelectric domain walls in $Ca_3Ru_{2(1-x)}Ti_xO_7$; **APS March Meeting**, March 13-17, 2017; New Orleans, Louisiana.
- 2. Aberration Corrected STEM Imaging of Domain Walls in Congruent LiNbO₃; **Microscopy & Microanalysis**, July 24-28, 2016; Columbus, Ohio.
- 1. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca, Sr)Fe₂O₅ Brownmillerite superlattices; **APS March Meeting**, March 14-18, 2016; Baltimore, Maryland.

Skills

- Software development and data visualization in python and MATLAB
- · Distributed Python programming with dask
- GPU programming in Python with cupy
- Machine learning with pytorch
- Mechanical and Focused Ion Beam Sample Preparation

- Operation of Thermo-Fisher (FEI), NION and JEOL aberration-corrected electron microscopy systems
- Chemical Vapor Deposition of 2D crystals (graphene, h-BN, MoS₂)

Teaching Experience

- Introduction to Materials Characterization Fall 2016
- Transmission Electron Microscopy Fall 2015

• Crystal Chemistry Fall 2013

• Engineering Thermodynamics Spring 2012

Penn State

Boston University

Mentoring Experience

Md.	Inzamam	U	l-Ha	que
-----	---------	---	------	-----

2021-Present

University of Tennessee Bredesen center graduate student, currently co-advising

with Dr. Jacob Hinkle & Dr. Olga S. Ovchinnikova.

Matthew Drexler

2018-2019

ORNL visiting graduate researcher from Georgia Tech, whom I mentored and taught

STEM operation and data collection with the NION microscopes.

Leixin Miao

2016-2018

Mentored and taught TEM sample preparation through FIB, analysis of STEM datasets with MATLAB scripts, and microscope image simulation through MATLAB. Leixin con-

tinued as a PhD student with my doctoral advisor – Dr. Nasim Alem.

Michael Brova

2014

Mentored and taught CVD growth of 2D crystals, and transfer of 2D materials onto TEM grids. Michael subsequently continued at Penn State for a PhD, and following

his doctorate joined Intel as a process engineer.

References

Dr. Sergei V. Kalinin

Corporate Fellow, Group Leader, Data NanoAnalytics Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN

Email: sergei2@ornl.gov Phone: (865) 207-7885

Dr. David A. Cullen

Senior R&D Staff Scientist, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN

Email: cullenda@ornl.gov Phone: (865) 576-0230

Prof. Nasim Alem

Associate Professor,

Materials Science and Engineering,

The Pennsylvania State University, University Park, PA

Email: nua10@psu.edu Phone: (814) 865-7928

Prof. Venkatraman Gopalan

Professor,

Materials Science and Engineering,

The Pennsylvania State University, University Park, PA

Email: vxg8@psu.edu Phone: (814) 865-2910

Prof. Sara E. Skrabalak

James H. Rudy Professor, Department of Chemistry,

Indiana University Bloomington, Bloomington, IN

Email: sskrabal@indiana.edu

Phone: (812) 856-1892

Dr. Matthew J. Brahlek

R&D Staff Scientist,

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

Email: brahlekm@ornl.gov Phone: (865) 574-0574