Simon Thébaud

Thematics: Thermoelectric Materials, Thermal Materials, Resonant States, Disordered Materials, Nanostructured Materials, Alloys, Doped Semiconductors, Two-dimensional Materials, Electron Transport, Phonon Transport, Electron-Phonon coupling, Oxides, Graphene, Anderson Localization

Methods: Large-Scale Numerical Simulations, Density Functional Theory, Wannier Functions, Tight-Binding Models, Exact Diagonalization, Chebyshev Polynomial Green's Function Method, T-matrix Approximation

Education

2016–2019 Ph.D. Theoretical Physics, Université Claude Bernard Lyon 1, Lyon.

"Electron and phonon transport in disordered thermoelectric materials: dimensional confinement, resonant scattering and localization", supervisors: G. Bouzerar, Ch. Adessi

2015–2016 MSc. Physics, Ecole Normale Supérieure de Lyon (ENSL), Lyon.

Grade A. 18.4/20, ranked 2/32

Courses on solid state physics, quantum mechanics, statistical physics, quantum fields... "Effects of Resonant States on the Thermoelectric Properties in Doped Semiconductors", supervisor: G. Bouzerar

2014–2015 Agrégation de Sciences Physiques, *ENSL*, Lyon.

Ranked 6/1433 nationwide

High-level competition examination giving access to teaching positions

2013–2014 MSc. Physics (1st year), ENSL, Lyon.

Grade A, 17.6/20, ranked 3/43

"Magnetic Phases in Two-Dimensional Lattices of Correlated Fermions: Triangular Graphene Nanoflakes", supervisor: G. Bouzerar

2012–2013 **B.S. Physics**, *ENSL*, Lyon.

Grade A, 16.9/20, ranked 7/41

"Search for new physics in a final state $X \to HH \to 4b$ ", supervisor: M. Gouzevitch

Research Experience

2019- **Postdoctoral Researcher**, *Oak Ridge National Laboratory*, Oak Ridge, USA.

Study of vibrational properties, thermal transport, electron-phonon coupling and topological properties in materials for thermal management and other energy applications.

- Methodological studies of vibrational properties in disordered models and materials using the T-matrix approximation and the CPGF method [2]
- Electron-phonon interactions in Iridium using the Quantum Espresso and the EPW software [1]
- Study of twist dynamics and topological crossings in non-symmorphic materials
- o Referee for Phys. Rev. B
- Organized the journal club of the Materials Theory, Modeling and Simulation section

2016-2019 PhD Researcher, Institut Lumière Matière, Lyon, France.

Study of resonant states, disorder and nanostructuring effects in thermoelectric materials using a combination of DFT calculations and tight-binding models

- DFT (SIESTA, Quantum Espresso, Phonopy) for electron and phonon band structures, extracting realistic tight-binding models
- Chebyshev-Polynomial Green's Function method for DOS, conductivity, spectral function in very large systems (exact treatment of disorder)
- Exact diagonalization for finite-size studies of IPR, diffusivity (exact treatment of disorder)
- Applications to resonant states, doping and confinement effects in Oxides [8][10][5], phonon properties in Graphene and Silicon [4]
- 2016 **Master's Researcher**, *Institut Lumière Matière*, Lyon, France.

 Analytical and numerical calculations on the thermoelectric properties of resonant states [9]
- 2014 Master's Researcher, Institut Lumière Matière, Lyon, France.
 Numerical calculations implementing the self-consistent Unrestricted Hartree Fock method to study itinerant magnetism in Graphene nanoflakes
- 2013 **Undergraduate Researcher**, *CERN*, Geneva, Switzerland.

 Analyses of particle collision data from the CMS detector in search of new particles

Conferences, Schools and Workshop

May 2019 EMRS Spring Meeting, Nice, France.

Delivered a talk: <u>S. Thébaud</u>, Ch. Adessi, and G. Bouzerar, "Resonant states: from minimal model to Vanadium doping in Strontium Titanate"

May 2019 Nanospain conference 2019, Barcelona, Spain.

Featured in a talk: Ch. Adessi, S. Pecorario, S. Thébaud, and G. Bouzerar, "DFT Study of the transport properties of single layer MoS_2 : Application to Thermoelectricity"

- Oct. 2018 Graphene & Co Research Group Annual Meeting, Sète, France.
 - Featured in a talk: <u>G. Bouzerar</u>, S. Thébaud, S. Radescu and Ch. Adessi, "Phonon Lifetime and Thermal Properties in Irradiated Graphene"
- Sept. 2018 **Summer School "Collective Behaviour in Quantum Matter"**, International Center for Theoretical Physics, Trieste, Italy.

Attended the three-week summer school and presented a poster: <u>S. Thébaud</u>, Ch. Adessi, and G. Bouzerar, "Effects of Resonant States, Localization and Nanostructuring on the Thermoelectric Properties"

Sept. 2018 Trends in NanoTechnology 2018, Lecce, Italy.

Featured in a talk: <u>Ch. Adessi</u>, S. Pecorario, S. Thébaud, and G. Bouzerar, "DFT Study of the Thermal Transport Properties of MoS_2 : Application to Thermoelectricity"

- Dec. 2017 Laboratory Theoretical Conference, Lyon, France.
 - Delivered a talk: <u>S. Thébaud</u>, Ch. Adessi, and G. Bouzerar, "Electronic Transport in Doped Oxides and Semiconductors: Application to Thermoelectricity and Spintronics"
- Nov. 2017 Thermoelectrics Research Group Annual Meeting, Montpellier, France.

 Delivered a talk: S. Thébaud, Ch. Adessi, S. Pailhès, and G. Bouzerar, "Resonant States,
 Quantum Confinement: Engineering Electronic Transport"
- Jun. 2017 Trends in NanoTechnology 2017, Dresden, Germany.

Featured in a talk: <u>Ch. Adessi</u>, S. Thebaud, R. Bouzerar, and G. Bouzerar, "First Principle Investigation on Thermoelectric Properties of Transition Metal Dichalcogenides: Beyond Rigid Band Model"

May 2017 EMRS Spring Meeting, Strasbourg, France.

Delivered a talk: <u>S. Thébaud</u>, Ch. Adessi, S. Pailhès, and G. Bouzerar, "Boosting the Power Factor with Resonant States: a Model Study"

Nov. 2016 Thermoelectrics Research Group Annual Meeting, Lyon, France.

Delivered a talk: <u>S. Thébaud</u>, Ch. Adessi, S. Pailhès, and G. Bouzerar, "The Influence of Resonant States on Thermoelectric Properties"

Oct.-Dec. Workshop on Scientific Computing, Lyon, France.

2016 Followed courses on system architecture, parallel programming, cluster usage...

Teaching Experience

2016–2019 **Teaching assistant**, *Université Claude Bernard Lyon 1*, Lyon, France.

Assisted in teaching undergraduate level courses during PhD work

- Led tutorial classes in **electromagnetism** (20h) and **solid state physics** (30h)
- Led practical work sessions in **thermodynamics** (20h) and **C++ programming** (90h)
- Prepared, led and graded weekly problem-solving sessions for small groups of 2-3 students in **thermodynamics** (30h)
- Prepared, supervised and graded oral and written partial examinations
- 2015-2016 **Teaching assistant**, *Lycée Jean Perrin*, Lyon, France.

Prepared, led and graded weekly problem-solving sessions for small groups of 2-3 students at the undergraduate level (40h)

2012-2013 **Tutor**, *Lycée Doisneaux*, Lyon, France.

- Performed volunteer work for the association "Trait d'union" which purports to help high-school students in low-income districts
- Tutored a class of high-school seniors for the Baccalaureat national examination

Skills and Interests

Languages

French Native

English Fluent

Spanish Basic

Leadership experience

- 2013 Lead organizer of a community event in Paris (300 attendees)
- 2013 Crew member for a community event in Manchester (1000 attendees)
- 2009-2010 Editor-in-chief of an online magazine on amateur audio drama

Computer skills

- Fortran programming
- C++ programming
- Parallel programming (MPI)
- Cluster usage

LaTeX writing

Inkscape, Audacity

Hobbies

- History and philosophy
- Tabletop and computer games including teamwork-based and investigation games

References

Postdoctoral Advisor

Lucas Lindsay (Oak Ridge National Laboratory): lindsaylr@ornl.gov

PhD supervisors

- o Georges Bouzerar (Institut Lumière Matière): georges.bouzerar@univ-lyon1.fr
- o Christophe Adessi (Institut Lumière Matière): christophe.adessi@univ-lyon1.fr

Publications

- [1] D. H. Moseley, <u>S. Thébaud</u>, L. R. Lindsay, Y. Cheng, D. L. Abernathy, M. E. Manley, and R. P. Hermann. **Temperature-dependent lattice dynamics in iridium.** *Phys. Rev. Mat.*, 4:113608, Nov. 2020.
- [2] S. Thébaud, C. A. Polanco, L. Lindsay, and T. Berlijn. Success and breakdown of the T-matrix approximation for phonon-disorder scattering. *Phys. Rev. B*, 102:094206, Sept. 2020.
- [3] Ch. Adessi, <u>S. Thébaud</u>, and G. Bouzerar. First principle investigation of the influence of sulfur vacancies on the thermoelectric properties of single layered MoS₂. Phys. Chem. Chem. Phys., 22:15048, Jun. 2020.
- [4] G. Bouzerar, <u>S. Thébaud</u>, S. Pecorario and Ch. Adessi. **Drastic effects of vacancies on phonon lifetime and thermal conductivity in graphene** *J. Phys.: Condens. Matter*, 32:295702, Apr. 2020.
- [5] Ch. Adessi, S. Thébaud, and G. Bouzerar. Ab initio investigation of the role of vanadium impurity states in SrTiO₃ for thermoelectricity. J. Phys. Chem. Sol., 138:109180, Mar 2020.
- [6] S. Thébaud, Ch. Adessi, and G. Bouzerar. Investigating the high-temperature thermoelectric properties of n-type rutile TiO2. Phys. Rev. B, 100:195202, Nov 2019.
- [7] <u>S. Thébaud</u>, Ch. Adessi, and G. Bouzerar. Large enhancement of the thermoelectric power factor in disordered materials through resonant scattering. *Phys. Rev. B*, 99:245203, Jun 2019.
- [8] G. Bouzerar, S. Thébaud, R. Bouzerar, S. Pailhès, and Ch. Adessi. Absence of confinement in (SrTiO₃)/(SrTi_{0.8}Nb_{0.2}O₃) superlattices. Phys. Rev. Materials, 2:035402, Mar 2018.
- [9] S. Thébaud, Ch. Adessi, S. Pailhès, and G. Bouzerar. Boosting the power factor with resonant states: A model study. Phys. Rev. B, 96:075201, Aug 2017.
- [10] G. Bouzerar, S. Thébaud, Ch. Adessi, R. Debord, M. Apreutesei, R. Bachelet, and S. Pailhès. Unified modelling of the thermoelectric properties in SrTiO₃. EPL, 118(6):67004, 2017.

[11] Ch. Adessi, <u>S. Thebaud</u>, R. Bouzerar, and G. Bouzerar. First principle investigation on thermoelectric properties of transition metal dichalcogenides: Beyond the rigid band model. *J. Phys. Chem. C*, 121(23):12577–12584, 2017.