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ABSTRACT 

 
 
ORNL partnered with Cummins Inc to demonstrate the feasibility of using additive manufacturing 
techniques to deposit large volume of new material on cast iron in the context of remanufacturing. 
Remanufacturing at Cummins Inc is carried out to repair any field damage and, in some cases, 
provide additional value by adding new features. Large volume deposition on difficult to weld 
materials is a challenging problem due to involved metallurgy. Phase-1 of this work evaluated the 
feasibility of using laser directed energy deposition technique to deposit new material layer by layer 
on cast iron engine blocks. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B 
braze filler. Leveraging the knowledge gained during Phase-1, Phase-2 focused on developing a low-
cost crack resistant ferrous alloy to repair cast iron via volume deposition techniques without 
preheating. Three different alloy chemistries were identified, and trials were performed on cast iron 
substrates to identify the optimal chemistry that provided adequate resistance to cracking in both, the 
deposits as well as the cast iron substrate. 
 
 

1.  DEVELOPMENT OF VOLUME DEPOSITION ON CAST IRON ENGINE BLOCKS BY 
ADDITIVE MANUFACTURING 

 
 
This Phase 2 technical collaboration project (MDF-TC-2016-037) was begun on November 9, 2017. 
Phase 2 identified two compositions that can be deposited via laser directed energy deposition process 
on cast iron while mitigating cracking, under certain geometric constraints. This could lead to 
significant cost savings, ability to add new features and reduced emissions. The findings need to be 
validated by depositing the developed material in a representative geometry. 
 
1.1 BACKGROUND 
 

Cummins Inc aims to remanufacture engine blocks by being able to add large volume of material 
on existing cast iron to repair various service damage and add new features. Initial research in Phase-
1 of this collaboration showed the presence of cracks in the heat affected zone of the cast iron. 
Detailed tests and microstructure investigations showed that the cracking occurred due the formation 
of tensile residual stresses in the heat affected zone due to the differences in the co-efficient of 
thermal expansion between the substrate (13-15 ⁰C-1)  and deposits (11.5 ⁰C-1).   

Cast iron by virtue of its high carbon content is a difficult to weld material [1, 2]. Traditionally 
cast iron has been welded using high nickel containing fillers to stabilize austenite in the heat-affected 
zone to prevent cracking [3-6]. In addition, high Ni containing alloys are also soft and hence are 
capable of absorbing the shrinkage stresses [6]. However, Ni rich alloys in addition to a being soft 
have a significant difference in CTE compared to cast iron.  

 
1.2 TECHNICAL RESULTS 
 

 A detailed review of the literature was performed to identify ferrous materials (Table-1) that 
would potentially minimize the residual stresses accumulated in the build. It has previously been 
reported that by effectively leveraging the martensitic transformation in the steels the tensile residual 
stresses from solidification can be effectively countermanded and a compressive residual stress can be 
induced in the zones adjacent to the weld metal. Typically, in steels martensitic transformation occurs 
around 400-500 ⁰C depending on the alloying elements and the carbon concentration. However, in 
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some special consumables the martensitic transformation occurs between 150-200 ⁰C.  Since the 
thermal expansion of austenite is larger than that of ferrite the volume expansion is maximized at 
lower temperatures. Ferrite has higher yield strength than austenite (at low temperature) and hence 
there is a lesser compensation of contraction strain by plastic relaxation. When transformation occurs 
at low temperatures there is a greater accumulation of stress before the low transformation 
temperature is reached. This leads to a greater bias in the microstructure in constrained specimens, 
making the shear strain more effective in counteracting thermal contraction strains. 

Therefore, this approach was used to develop and design the consumable which has a low 
martensitic transformation temperature (LTT) and also limit the carbon equivalent in the steel to 
ensure resistance to hydrogen induced cracking. An extensive literature survey was conducted to 
identify the LTT alloys that have been previously used and the alloys along with their martensite start 
temperatures are summarized in Table 1. In addition, it has also been shown in previous results that 
better resistance to cold cracking was obtained by optimizing the amount the retained austenite in the 
builds. Studies have also shown that low transformation temperature (LTT) materials with a low C, 
high Cr and Ni are more resistant to cracking and have a high toughness as well. Therefore 5 
compositions were down selected to develop filler materials for the repair of cast iron blocks. The 
compositions used in this work are shown in Table 2. 
 

Table 1. Showing the different LLT alloys that have been used and the associated martensite 
start temperatures 

  C Mn Cr Ni 
Ms temperature ˚C 

Payson & 
savage 

Grange & 
Stewart 

Steven & 
Haynes 

Alloy 1 0.089 1.26 5.7 5.3 181.8857 132.307 289.856 
Alloy 2 0.07 0.72 0.69 8.2 296.733 298.801 352.714 
Alloy 3 0.066 1.29 10 5 73.6408 -22.007 231.759 
Alloy 4 0.037 1.29 11.9 5.6 19.9851 -97.088 203.005 
Alloy 5 0.025 0.7 10 10 22.7725 -81.255 185.84 
Alloy 6 0.01 1.8 12.5 6.7 -23.497 -151.86 169.92 
Alloy 7 0.02 0.19 9.76 10.14 45.673 -52.991 206.893 
Alloy 8 0.076 0.55 6.14 6.13 183.5528 131.401 298.071 
Alloy 9 0.04 0.7 8 6 140.422 68.73 280.73 
Alloy 10 0.04 0.7 10 8 51.422 -47.87 212.73 
Alloy 11 0.04 0.7 10 10 18.022 -86.67 178.73 
Alloy 12 0.04 0.7 10 12 -15.378 -125.47 144.73 
Alloy 13 0.04 0.7 8 8 107.022 29.93 246.73 
Alloy 14 0.04 0.7 10 10 18.022 -86.67 178.73 
Alloy 15 0.03 0.7 10 10 21.189 -83.06 183.47 
Alloy 16 0 0.2 11 3.41 129.593 36.166 309.37 
Alloy 17 0 0.28 12 9.99 -10.757 -133.498 177.846 

 
The CALPHAD calculations along with martensite start temperatures were performed on the 

alloys shown in Table 2. Carbon equivalent for all the compositions were also calculated and the 
alloys were ranked based on the susceptibility to hydrogen induced cracking. The CALPHAD results 
are also presented in Figure 1. CALPHAD was performed to understand the phase fractions, in 
particular the residual amount of retained austenite that could be expected in the builds. Ideally it has 
been shown that an 8-10% volume fraction austenite improves resistance to cracking. 

 
Table 2. Shows the different LLT alloys down selected and their corresponding martensite start 
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temperatures and carbon equivalents. 

Composition C (wt%) Cr (wt%) Ni (Wt%) 
Payson and 
Savage 

Grange and 
Stewart 

Steven and 
Haynes 

Carbon 
Equivalent 

Composition 1  0.01 11.25 10.64 -22.7412 -141.7218 141.995 3.06 
Composition 2 0.083 9.375 10.20 41.949 -54.3015 189.1625 2.64 
Composition 3  0.077 8.75 10.05 63.5124 -25.1614 204.885 2.5 
Composition 4 0.055 6.25 9.47 149.766 91.399 267.775 1.9 
Composition 5 0.044 5 9.172 192.8928 149.6792 299.22 1.66 
Composition 6 0.039 4.375 9.03 214.4562 178.8193 314.9425 1.52 
Composition 7 0 0 8 365.4 382.8 425 0.53 
Composition 8 0.11 12.5 10.93 -65.868 -200.002 110.55 Austenite  

  
 

 
 

Figure 1. CALPHAD calculations showing the phase equilibria for various compositions showing the 
mole fractions of BCC and FCC phases as a function of temperature. 
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Based on the CALPHAD results on phase fractions (Figure 1) and the calculations of Ms 
temperatures three compositions were down selected for trails. The compositions are 

1) Composition 8 
2) Composition 7 
3) Composition 3 

The trials were performed on cast iron substrates using laser blown powder deposition process. The 
results are summarized as follows.  
 
Deposits fabricated with Composition-8: 
Composition 8 was completely austenitic and served as a baseline to evaluate the benefits of using 
LTT materials. Three different deposit scan strategies were evaluated to understand the differences in 
cracking behavior. The scan strategies used and the builds are shown in Figure 2. All the builds had 
varying degrees of cracking at the deposit/substrate interface. 

 
Figure 2. Showing various scan strategies used and the associated cracking tendencies in the fabricated 

samples.  
 

To further understand the reasons for cracking, detailed microscopy analysis was performed on the 
samples. The microscopy results are shown in Figure 3. The micrographs show that the crack 
originates in the cast iron heat affected zone and are more pronounced at the edges and significantly 
and are limited in the center. In addition, the primary austenitic structure also leads to severe cracking 
in the first few passes in the weld metal. This lack of phase transformation could have accelerated the 
cracking due to the shrinkage stresses. X-Ray diffraction analysis was performed on the powder and 
the builds. The data clearly shows the absence of any phase transformation from the austenitic phase 
to the martensitic phase. The results of the X-Ray diffraction are presented in Figure 4. 
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Figure 3. Optical micrographs of the uni-direction raster (a) Montage showing the presence of cracking 

in the cast iron substrate (b) Cracking at the edges shown at higher magnification (c) Cracking in the 
center shown at a higher magnification 
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Figure 4. X-Ray diffraction results of the (a) Powder (b) Bidirectional raster (c) Uni directional raster (d) 
45-degree raster. The X-Ray diffraction patterns shown the presence of 100% FCC phase in the builds 

 
Deposits fabricated with Composition-7: 
Composition 7 based on the CALPHAD calculations was designed to contain at least 8-10% FCC 
phase. The X-Ray diffraction analysis of the powder confirms this (Figure 6). The deposits were 
fabricated on a cast iron substrate using identical parameters used in the previous case. While in the 
previous case a total of 25 layers could be deposited in this case a total of 40 layers were deposited. 
The optical micrograph also shows limited cracking in the builds in the un etched condition. 
However, when the dimension of the build was reduced from 40X40X40 mm3 to 20X20X20 mm3 
the cracking was eliminated (Figure 5). X-Ray diffraction did not indicate any phase differences in 
the microstructure between the two cases (Figure 6).  
 

 
 

Figure 5. Optical micrograph (a) Un etched micrograph of the 40X40X40 mm3 samples showing cracks 
at the edges (b) 20X20X20 mm33 sample fabricated with identical process parameters (c) Etched 

microstructure of (a) (d) Interface at higher magnification (e) Micrograph of the deposit showing a 
martensitic structure 
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Figure 6. X-Ray diffraction of the powder and the build showing the presence of residual austenite films 
in the samples 

 
Deposits fabricated with Composition-3: 
Composition 3 had a higher alloy content, which reduced the martensite start temperature. 
Therefore, one would expect a lower cracking tendency in these builds. The exact same 
process parameters were used to fabricate the builds. The results demonstrate that a 
significant reduction in cracking along the edges was obtained. The results are summarized in 
Figure 7. The micrographs show that the lower transition temperature clearly reduced the 
cracking tendency in the builds while the smaller samples fabricated clearly showed the 
absence of any cracks. This could be attributed to the lower thermal mass in the smaller build 
which would lead to a higher average temperature during the build. This would lead to a 
slower cooling rate and therefore lower shrinkage strains thereby possibly reducing the 
cracking tendency. In addition, the fraction of retained austenite (RA) was also higher with 
~20% RA as measured using X-Ray diffraction (Figure 8). This should also help absorb 
some strain therefore lead to improved cracking resistance as shown in the previous studies, 
thus contributing to the increased cracking resistance. 
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Figure 7. Optical micrographs of the (a) 40X40X40 mm3 sample in the un etched condition. Note that the 
cracks are smaller compared to the previous study (b) 20X20X20 mm3 sample in the un etched condition 

clearly showing the absence of cracking at the interface (kindly refer to figure 5 (b) (c) and (d) Etched 
micrographs of the samples showing the presence of martensite in the matrix with retained austenite in 

the inter dendritic area which is higher in alloying content 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. X-Ray diffraction the build showing the presence of residual austenite films in the samples 
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1.3 IMPACTS 
  
This work has demonstrated the potential of using the laser powder blown DMD system to 

develop solutions for repair applications and add new features on existing part. Though the laser 
powder blown process has been used extensively to rebuild worn turbine blades, the use of the 
technology for automotive applications and for difficult to weld materials, is novel. Remanufacturing 
of engine blocks would result in significant cost savings and also help in reducing the greenhouse gas 
emissions by up to 85%. 

 
1.3.1 SUBJECT INVENTIONS 
 
N/A 

 
 

1.4 CONCLUSIONS 
  

In this Phase 2 study, two unique compositions of filler material were identified that resulted in 
significant reduction in cracking in the AM build as well as the cast iron substrate. It was 
demonstrated that the length of the AM builds i.e. the length of the interface also has an influence on 
the cracking tendency by showing that a reduction in the length of the build, cracking can be 
completely eliminated. A potential explanation for the geometric dependence of the cracking 
tendency is the change in thermal history during deposition. In a longer build, each point cools down 
to lower ambient temperature compared to a smaller geometry where the beam return time is faster 
thereby generally keeping the overall build at an elevated temperature and reducing the cooling rate to 
ambient temperature. In summary, a successful repair operation would rely on a combination of 
appropriate alloy selection for the filler material as well as being aware of the geometry effects. Thus, 
repairs requiring longer scan lengths can be divided into smaller sections to facilitate crack free 
deposition.  

 
 

2.  CUMMINS, INC BACKGROUND 
 
Cummins Inc is a global power leader that designs, manufactures, sells and services diesel and 
alternative fuel engines from 2.8 to 95 liters, diesel and alternative-fueled electrical generator sets 
from 2.5 to 3,500 kW, as well as related components and technology. Cummins Inc serves its 
customers through its network of 600 company-owned and independent distributor facilities and more 
than 7,200 dealer locations in over 190 countries and territories. The Engine Segment manufactures 
and markets a complete line of diesel and natural gas-powered engines for on-highway and off-
highway use. Its markets include heavy- and medium-duty truck and bus, light-duty automotive and 
off-highway (ranging from 60 to 755 horsepower). The Engine Segment also provides a full range of 
new parts and services and remanufactured parts and engines through an extensive distribution 
network. 
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