CHEN ZHANG

Github: github.com/KedoKudo \diamond Linkedin: linkedin.com/in/chen-z-5a081725

I am a computational scientist at the Computer Science and Mathematics Division in Oak Ridge National Laboratory with a research focus in computational micro-mechanics and neutron scattering data reduction. I am proficient with Python, C++, and FORTRAN for processing neutron scattering data as well as using Finite element analysis to perform crystal plasticity simulation.

PROFESSIONAL EXPERIENCE

Oak Ridge National Laboratory

August 2020 – Present

 $R {\mathscr E} D \ Associate \ Staff$

- $\cdot\,$ Maintaining neutron scattering data reduction software Mantid.
- Maintaining and developing computational toolkit for neutron imaging group at Spallation Neutron Source in Oak Ridge National Laboratory.
- Assisting the data reduction toolkit development for Biological Small-Angle Neutron Scattering Instrument (Bio-SANS) at High Flux Isotope Reactor in Oak Ridge National Laboratory.

Colorado School of Mines & Advanced Photon SourceSeptember 2019 – August 2020Post-Doctoral FellowSeptember 2019 – August 2020

- \cdot Developing semi-automated data processing pipeline for the HT-HEDM instrument located at Advanced Photon Source.
- Participating the development of a Python-based control system that synchronize the experiment control and real time note keeping.
- · Developing x-proc (tomoproc&hedmproc), a collection of meta-packages to streamline the post processing of tomography, ff-HEDM, and nf-HEDM data, primarily aimed for the HT-HEDM instrument.
- $\cdot\,$ Participating in the deployment of the new HT-HEDM at 6-ID-D at Advanced Photon Source.

Carnegie Mellon University & Advanced Photon SourceSeptember 2018 – August 2019Postdoctoral Research AssociateSeptember 2018 – August 2019

- \cdot Conducting synchronization analysis of duo-detector configuration for the ff-HEDM experiment with HT-HEDM instrument.
- \cdot Leading the development of a modern Python-based experiment control system for the HT-HEDM instrument.
- Developing tomoproc, a Python meta-package for automated tomography reconstruction using data collected with HT-HEDM instrument.
- Participating the development of HEXOMAP, : A GPU-based microstructure reconstruction library for processing nf-HEDM data collected with HT-HEDM instrument
- · Conducting tomographic characterization of solid oxide fuel cells using high-energy transmission X-ray microscopy to evaluate the porosity structure of the cathode.

Michigan State University

August 2010 – August 2018

Graduate Research Assistant

- Studying the plastic deformation history of Ti-5Al-2.5Sn (wt%) using crystal plasticity modeling in conjunction with electron backscatter diffraction (EBSD) and differential aperture X-ray microscopy (DAXM)
- · Maintaining and developing constitutive models for open-source material analysis toolkit: Düsseldorf Advanced Material Simulation Kit (DAMASK)
- Developing Python package *CYXTAL* for materials informatics, including residual lattice stress–strain extraction and dislocation content mapping (in development)

- Developing new algorithm that can provide spatially resolved dislocation density information by analyzing large set of micro-Laue diffraction patterns
- \cdot Developing new algorithm for 3D dislocation network reconstruction from 3D electron channeling contrast imaging (ECCI) data using computer vision and machine learning

Michigan State University

Teaching Assistant

- $\cdot\,$ Teaching undergraduate students to implement various algorithm using **Matlab** and **Excel**
- Teaching standard experimental techniques for materials characterization.

Oak Ridge National Laboratory

Visiting Scholar

 \cdot Developing computational toolkit for analyzing and visualizing subsurface dislocation content using micro-Laue diffraction data.

Max-Planck-Institut für Eisenforschung GmbH

R&D Intern

 \cdot Developing 3D microstructure reconstruction algorithm for crystal plasticity simulation using computer vision and data mining.

PUBLICATIONS

- 2019 A. Chakraborty, C. Zhang, S. Balachandran, T. Bieler, P. Eisenlohr, Assessment of surface and bulk-dominated methodologies to measure critical resolved shear stresses in hexagonal materials, Acta Materialia
- 2018 C. Zhang, T.R. Bieler, P. Eisenlohr, Exploring the accuracy limits of lattice strain quantification by virtual diffraction, Scripta Materialia
- 2018 C. Zhang, S. Balachandran, P. Eisenlohr, M.A. Crimp, C. Boehlert, R. Xu, T.R. Bieler Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis, Scripta Materialia
- 2017 M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, F. Roters A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations, Integrating Materials and Manufacturing Innovation
- 2015 C. Zhang, H. Li, P. Eisenlohr, W. Liu, C.J. Boehlert, M.A. Crimp, T.R. Bieler Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn, International Journal of Plasticity
- 2014 T.R. Bieler, P. Eisenlohr, C. Zhang, H. Phukan, M.A. Crimp Grain boundaries and interfaces in slip transfer, Current Opinion in Solid State and Materials Science, 2014
- 2010 C. Zhang, B. Lv, Y. Wang Study of sand mold strength in cast magnesium alloy production, Foundry Engineering, 2009

June 2012

February 2013

August 2010 – April 2017

Michigan State University	$August \ 2010 - August \ 2018$	
Materials Science and Engineering, Ph.D.	GPA: 3.8/4.0	
Shanghai Jiao Tong University	2006-2010	
B.S. in Materials Science and Engineering, Minor in Management	GPA: 3.7/4.0	
Hohhot No.2 Middle School	2003-2006	
N/A	GPA: 3.7/4.0	
SCHOLARSHIPS AND AWARDS		
Outstanding Graduate Student	April 2016	
College of Engineering, Michigan State University, MI		
Graduate School Fellowship	March 2015	
Graduate School, Michigan State University, MI		
Engineering Graduate Study Fellowship	Jan. 2015	
College of Engineering, Michigan State University, MI		

TECHNICAL SKILLS

$E_{\rm xperiments}$	• Experienced with Finite Element Analysis (FEA) based structural analysis in conjunction with CAD modeling
	• Experienced in X-ray diffraction based characterization techniques
	• Proficient in Linux based system administration
	• Proficient in applying machine learning technique for big data analysis
	• Familiar with modern Electron Backscatter Scanning Microscopy (EBSD) based crystal orientation characterization
	\bullet Familiar with standard mechanical testing (tensile, hardness, impact)
	• Familiar with additive manufacturing process
Programming	• Experienced in Python scripting for fast prototyping, proficient in using Cython for developing high performance Python library
	• Experienced in using Fortran and C++ for scientific computing, proficient in using MPI library to improve code efficiency
	\bullet Experienced in $\ensuremath{\mathbb{L}}\xspace{TEX}$ types etting system, proficient in Microsoft Office suite
	• Proficient in using \mathbf{R} , Matlab for statistic analysis
	\bullet Proficient in using GNU make and Git for project management
	\bullet Familiar with ${\bf SQL}$ based database management

NOTABLE PROJECTS

- $\diamond\,$ Computer vision based auto-reconstruction of 3D dislocation network using 3D ECCI data
- ◊ An efficient pseudo nonlocal crystal plasticity model for simulating grain boundary effect
- ♦ Non-destructive characterization of dislocation content using micro-Laue diffraction based streak analysis
- $\diamond\,$ Silver Screen Oracle: box-office prediction using sentiment analysis and public opinion mining
- \diamond Shape Interpolation for seamless transition between source and target shapes using CGAL