Overview of changes to the ORIGEN family of codes from SCALE 6.1 to 6.2

W. Wieselquist* S. Hart* A. Isotalo¹ F. Havluj² S. Skutnik³ R. Lefebvre* I. Gauld* D. Wiarda* J. Lefebvre* G. Hu⁴ N. Sly³ D. Lago⁵

* ORNL

¹ Aalto University, Finland
 ² ÚJV Řež, a. s., Czech Republic
 ³ University of Tennessee, Knoxville
 ⁴ University of Illinois, Urbana-Champaign
 ⁵ Georgia Tech

ORIGEN

Oak Ridge Isotope Generation

calculates time-dependent concentrations, activities, and radiation source terms for a large number of isotopes generated by neutron transmutation, fission, and radioactive decay

 Used internally with TRITON and Polaris sequences in SCALE for depletion/decay

- ORIGEN stand-alone has unique capabilities
 - Simulates continuous nuclide feed and chemical removal (for liquid fuel or reprocessing systems)
 - Generates alpha, beta, gamma, and neutron decay emission spectra
- The guiding principle is to use current nuclear data without approximation
 - 2,200 nuclides
 - 54,000 transitions
 - Single-step calculation time <1s

ORIGEN family and friends

Family

- ORIGEN: main isotopics solver (*dN/dt* = *AN*) and emission calculator [changed]
- COUPLE: transition matrix management (creates A)
- ARP: transition matrix interpolation (interpolates A from reactor library)
- **OPUS**: post-processor (outputs *N(t)* in various units)

Friends

- ORIGAMI: rapid spent fuel isotopics [new]
- ORIGAMI Automator: graphical user interface (GUI) for managing many ORIGAMI calculations [new]
- ORIGEN Reactor Libraries: set of parametrized A for various reactor types [updated]

Evolution of ORIGEN capabilities

- SCALE 5.1 (2006): includes GUI, new ORIGEN libraries for different reactor types
- SCALE 6.0 (2009): includes new base cross section libraries (ENDF/B-VI) and updated gamma ray libraries; retains all previous reactor libraries
- SCALE 6.1 (2011)
 - Includes ENDF/B-VII decay data, expanded nuclides, and energy-dependent fission yields
 - Replaces the old 3-group libraries with 238-group data from JEFF/A-3.0

• SCALE 6.2 (2016)

- Completely rewritten modular ORIGEN source code, dynamic memory allocations
- New CRAM solver
- Rewritten, streamlined input format
- Endian-agnostic binary f71 and f33 formats
- Integrated alpha and beta sources and spectra
- ORIGEN application programming interface (API) to allow embedding depletion calculation in other codes

Changes from SCALE 6.1 → SCALE 6.2

Refactored manual

- Dropped "-S" in "ORIGEN-S" ③
- An ORIGEN .f33 file is the only "library" disambiguated from
 - Fundamental data components which are now "resources"
 - Nuclide categories (light, actinide, or fission product) are now "sublibs"
 - Reactor-specific collections of .f33 files are "ORIGEN Reactor Libraries"

Changed file formats

- text output file (.out)
- binary output files (.f71, .f33)

Default ARP interpolation method

- Lagrange \rightarrow Cubic Spline, better but slower

Changed user interfaces

- ORIGEN text input redesigned using SCALE Object Notation (SON); also can read SCALE 6.1 FIDO, but may not work for all inputs
- GUI with Fulcrum

Changes to nuclide ids

- Default is SCALE-standard IZZZAAA, e.g., u235m → 1092235 (instead of 922350)
- Also accepts symbolic IDs "u235m"
- Introduced character sublibs
 1→LT, 2→AC, 3→FP
- Changed defaults for emission spectra

Added/updated from SCALE 6.1 → SCALE 6.2

Added

- ORIGAMI: rapid spent fuel isotopics user interface for light water reactor (LWR) UO₂ systems
- ORIGAMI Automator: GUI component in Fulcrum for managing many ORIGAMI calculations
- CRAM solver (will be default in 6.3)

Updated

- ORIGEN reactor libraries
 - Updated using ENDF/B-VII.1 data
 - Included new reactor types
 - Generated using consistent, traceable methodology (SLIG)

Refactored manual

SCALE 6.1

- Organization
 - Each chapter was an ORNL TM document
 - Chapters
 - D1 ORIGEN-ARP
 - F6 COUPLE
 - F7 ORIGEN-S
 - **F15** OPUS
 - M6 ORIGEN-S Data Libraries
- Attribution
 - ORNL TM authors
 - Acknowledgments included to recognize past contributors and those from outside ORNL

SCALE 6.2

- Organization
 - Single Chapter 5 for Depletion, Activation, and Source Terms
 - Sections
 - 5.1 ORIGEN, COUPLE, ARP, OPUS
 - 5.2 Data Resources
 - 5.3 ORIGEN Reactor Libraries
 - 5.4 ORIGAMI
- Attribution
 - Introduction by code manager
 - All contributions to 6.2 acknowledged in author list
 - New section on version history will acknowledge previous contributors

Library (.f33) and solution (.f71) file formats SCALE 6.1 SCALE 6.2

- Simple (Fortran) binary reading/writing
- Record-based storage
 - Header records
 - NBU burnup records
- Same Fortran I/O in many places throughout SCALE
- Difficult to introduce new data or remove old data without breaking formats
- Required using special compiler endianness flags to ensure that read/write worked across all platforms

- New Binary Object File Format (BOFF)
- Keyword-based storage
 - Arbitrary hierarchy
 - Compartmentalized data
- Centralized I/O callable from C++/Fortran
- Easy to introduce new data, reorganize, recognize different versions of a particular file
- Automatic byte reversal for endianness
 → easy cross-platform
- Downside: can no longer read binaries with simple Fortran

Aside: coping with new binary formats (BOFF)

- Users require access to binaries usually just to read them into a post-process, e.g., to link an ORIGEN solution as input to another calculation
 - Do not need library (.f33) manipulation
 - Need solution (.f71) manipulation

• How to link in SCALE 6.2

- Use OPUS post-processing
 .f71→.plt and process the (ASCII)
 .plt file
- Build the C/C++ application against ORIGEN API
- Experimental: use command line f7ltocsv in SCALE install's bin directory to dump isotopic contents to CSV

Changed ARP interpolation

- More interpolation methods and change in default
 - Nearest
 - Linear
 - 4th order Lagrange poly [6.1 default]
 - Cubic spline
 - Monotonic cubic spline [6.2 default]
- Overcomes oscillation problem that can impact accuracy; for small xs (10⁻¹⁰ barns), interpolating near slight oscillations can result in a small negative xs

New ORIGEN user interface

SCALE 6.1 FIDO

- Simple decay problem
 - 2 Ci ⁶⁰Co
 - 1 Ci ^{137m}Ba
- Photon (gamma) emission spectra
- User-defined group structure

_											
1	=orig	gens									
2	0\$\$ a	a11 71	е	t							
3	Outle	et Teri	n								
4	3\$\$	2 1 1	27	a16	4 a3	3 47 e	t				
5	35\$\$	0 t									
6	54\$\$	a8 1 a	a11	0 e	1						
7	56\$\$	0 1 a	61	a10	0 a1	3 98 3	30	20e			
8	57**	0 a3	1e	-16	е						
9	95\$\$	0 t									
10	Relea	ase En	d								
11	Ci										
12	60**	0									
13	61**	f0.05									
14	65\$\$										
15	'GRAI	M-ATOM	S	GRA	MS	CURIE	S	WATTS-/	ALL WATTS	S-GAMMA	
16	i	3Z	1	0	0	3z	3z	3Z	6Z		
17	1	3Z	1	0	0	3z	3z	3Z	6Z		
18		3Z	1	0	0	3z	3z	3Z	6Z		
19	81\$\$	2 0 2	31	е							
20	82\$\$	2 e									
21	83**	2.00E	+07	1.4	0E+07	1.20E	+07	1.00E+07	8.00E+06	7.50E+06	7.00E+06
22	2	6.50E	+06	6.0	0E+06	5.50E	+06	5.00E+06	4.50E+06	4.00E+06	3.50E+06
23		3.00E	+06	2.7	5E+06	2.50E	+06	2.35E+06	2.15E+06	2.00E+06	1.80E+06
24	ł	1.66E	+06	1.5	7E+06	1.50E	+06	1.44E+06	1.33E+06	1.20E+06	1.00E+06
25		9.00E	+05	8.0	0E+05	7.00E	+05	6.00E+05	5.12E+05	5.10E+05	4.50E+05
26		4.00E	+05	3.0	0E+05	2.60E	+05	2.00E+05	1.50E+05	1.00E+05	7.50E+04
27	1	7.00E	+04	6.0	0E+04	4.50E	+04	3.00E+04	2.00E+04	1.00E+04	е
28	73\$\$										
29	27060	00 561	371	е							
30	74**										
31	2.00	E+00	1.0	0E+0	0						
32	75\$\$										
33	13										
34	t										
35	56\$\$	00a	10	1 e	t						
36	56\$\$	f0 t									
37	end										

SCALE 6.2 SON

1 =ori	igen
2 bour	nds{
3	gamma=[
4	2.00E+07 1.40E+07 1.20E+07 1.00E+07 8.00E+06 7.50E+06 7.00E+06
5	6.50E+06 6.00E+06 5.50E+06 5.00E+06 4.50E+06 4.00E+06 3.50E+06
6	3.00E+06 2.75E+06 2.50E+06 2.35E+06 2.15E+06 2.00E+06 1.80E+06
7	1.66E+06 1.57E+06 1.50E+06 1.44E+06 1.33E+06 1.20E+06 1.00E+06
8	9.00E+05 8.00E+05 7.00E+05 6.00E+05 5.12E+05 5.10E+05 4.50E+05
9	4.00E+05 3.00E+05 2.60E+05 2.00E+05 1.50E+05 1.00E+05 7.50E+04
10	7.00E+04 6.00E+04 4.50E+04 3.00E+04 2.00E+04 1.00E+04]
11 }	
12 case	9
13 {	
14	title='DBST End of Release 6.4 hrs'
15	lib{
16	file="end7dec"
17	}
18	mat{
19	iso=[
20	co60(LT)=2
21	ba137m(FP)=1
22]
23	units=CURIES
24	}
25	time{
26	t=[6.4]
27	units=HOURS
28	}
29	gamma{
30	brem_medium=NONE
31	conserve_line_energy=N0
32	split_near_boundary=YES
33	}
34	print{
35	gamma{
36	summary=YES
37	spectra=YES
38	}
39	}
40 }	
41 end	
42	

Output file format (.out)

SCALE 6.1

no neutron source nuclides found, n	ot printed
	neutron spectra for problem specific
matrix)	
1 * gamma sourc	es determined *
Ocase applies the following photon	data base
master photon	library
in binary mode	2
0 the sources include photons fo	or the following nuclide groups
light elements	
fission products	
1	
page 4	
gamma	source intensity as a function of
time	-
0 DBST	'End of Release
	gamma spectra,
photons/sec/basis	
	basis = Ci
grp boundaries, mev 0.0 n	
1 1.00E - 02 - 2.00E - 02 0.000E + 00	
2 2.00E-02 = 3.00E-02 0.000E+00 3 3 00E-02 = 4 50E-02 2 348E+00	
4 4 50E -02 - 6 00E -02 0 000E +00	
5 6 00E - 02 - 7 00E - 02 0 000E + 00	
67.00E-02 - 7.50E-02 0.000E+00	
7 7.50E-02 - 1.00E-01 0.000E+00	
8 1.00E-01 - 1.50E-01 0.000E+00	
9 1.50E-01 - 2.00E-01 0.000E+00	
10 2.00E-01 - 2.60E-01 0.000E+00	
11 2.60E-01 - 3.00E-01 0.000E+00	
12 3.00E-01 - 4.00E-01 5.503E+06	
13 4.00E-01 - 4.50E-01 0.000E+00	
14 4.50E-01 - 5.10E-01 0.000E+00	
15 5.10E-01 - 5.12E-01 0.000E+00	
16 5.12E-01 - 6.00E-01 0.000E+00	
17 6.00E-01 - 7.00E-01 3.385E+10	

SCALE 6.2

boundaries (MeV)	0.0hr 6.4hr	
groups 1	through 15 are zero	
2.750E+00 - 2.500E+00	7.4000E+02 7.3993E+02	
2.500E+00 - 2.350E+00	7.4000E+02 7.3993E+02	
2.350E+00 - 2.150E+00	8.8800E+05 8.8791E+05	
groups 19	through 24 are zero	
1.440E+00 - 1.330E+00	3.6994E+10 3.6990E+10	
1.330E+00 - 1.200E+00	3.6994E+10 3.6990E+10	
1.200E+00 - 1.000E+00	7.3889E+10 7.3882E+10	
1.000E+00 - 9.000E-01	0.0000E+00 0.0000E+00	
9.000E-01 - 8.000E-01	5.6240E+06 5.6235E+06	
8.000E-01 - 7.000E-01	0.0000E+00 0.0000E+00	
7.000E-01 - 6.000E-01	3.3263E+10 0.0000E+00	
groups 32	through 35 are zero	
4.000E-01 - 3.000E-01	5.5500E+06 5.5495E+06	
groups 37	through 44 are zero	
4.500E-02 - 3.000E-02	2.6804E+09 0.0000E+00	
groups 46	through 47 are zero	
total	1 8383E+11 1 4787E+11	

More flexible nuclide identifiers

SCALE 6.1

- Old isotopics initialization handled by 3 arrays
 - ZZAAAI nuclide id (73\$\$)
 - amount (74**)
 - sublib (75\$\$)

28 73\$\$	
29 270600 561371 e	
30 74**	
31 2.00E+00 1.00E+00	
32 75\$\$	
33 1 3	
· ·	

 For long lists (10+ nuclides), it was difficult to ensure that the id/sublib/amount matched up

SCALE 6.2

• New isotopics initialization uses a "triplet" id (sublib) = amount

idform=ZAI to use old ZZAAAI form

Change to gamma emission spectra defaults

- Two interesting options for binning photon line data
 - split_near_boundary
 If a line is within 3% of a bin
 boundary → add 50% to both adjacent bins
 - conserve_line_energy
 If a line energy does not coincide with the bin middle energy → adjust photon emission
 rate so that energy emission rate is conserved
- conserve_line_energy can significantly change results for coarse energy grids

- We must choose to conserve particles or energy when binning line data
 - Once binned, the energy distribution within the bin is lost
 - It becomes the energy of the midpoint of the bin
- 6.1 (cannot change through input)
 - split_near_boundary=YES
 - conserve_line_energy=YES
- 6.2 defaults
 - split_near_boundary=NO [changed]
 - conserve_line_energy=YES

Understanding conserve_line_energy

- ⁶⁰Co lines
 - 1.173 MeV at 7.4E10 photons/sec
 - 1.332 MeV at 7.4E10 photons/sec
- conserve_line_energy=NO
 - Emission is binned as expected
- conserve_line_energy=YES
 - For 1.173 MeV, because bin middle energy is *below* line energy, photons/sec are scaled UP to preserve line energy
 - For 1.332 MeV, because bin middle energy is *above* line energy, photons/sec are scaled DOWN to preserve line energy
- NOTE: If we were looking at energy emission (MeV/second) instead, conserve_line_energy=YES

would look "better"

• The effect of the choice disappears for "fine" grids

New sequence: ORIGEN Assembly Isotopics - ORIGAMI

- Motivation
 - Perform many spent fuel calculations
 - US fuel inventory analysis (200,000+ assemblies) for UNF Standards
 - NRC Level 3 probability risk assessment
 (3000+ assemblies)
 - Using SCALE 6.1 GUI impractical

- Power shape axial & radial $\rightarrow p(z) \times p(x, y)$
- Moderator density axial only $\rightarrow m(z)$
 - Fuel composition radial only $\rightarrow c(x, y)$

ORIGAMI Express Form In Fulcrum

SCALE	
File Edit View Run Help	
Reload origami.inp Save origami.inp Save origami.inp as Close tab Print	: Cut Copy Paste Undo Redo Find
lavigation 🗗 🗙 origami.inp 🔀	
Filter	E 6.2 ▼ R <u>u</u> n ▼
csas5	- Criticality safety analysis using KENO V.a
Csas6	- Criticality safety analysis using KENO-VI
CSaS5S	- Criticality safety search using KENO V.a
Starbucs	- Automated criticality safety analyses using burnup credit
devo	- 3D discrete ordinates eigenvalue analysis with Denovo
kmart.5	- KENO V.a multigroup post processor for fluxes and reaction rates
kmart6	- KENO-VI multigroup post processor for fluxes and reaction rates
kenova	- Monte Carlo eigenvalue neutron transport module with simplified geometry
kenovi	- Monte Carlo eigenvalue neutron transport module with generalized geometry
t-xsec	- Problem-dependent multigroup cross section processing with material aliasing
t-xsdrn	- 1D discrete ordinates transport sequence
t-depl-1d	- 1D discrete ordinance depletion
newt	- 2D discrete ordinates transport module
t-newt	- 2D discrete ordinates transport sequence
t-depi	- 2D discrete ordinates depiction with simplified
t5-den]	- Monte Carlo depletion using KENO V a
t6-depl	- Monte Carlo depletion using KENO-VI
mavric	- Shielding analysis with Monaco using automated variance reduction
monaco	- Monte Carlo fixed-source neutron and gamma transport
origen	- Depletion, decay, and activation analysis
origami	- UO2 express form (configurable)
oridami	- Depletion module for reactor assemblies
opus	- ORIGEN post processing utility
tsunami=1d	- 1D sensitivity/uncertainty analysis
tsunami-20	- 2D sensitivity/uncertainty analysis
tsupami-3d-ka	5 - 5D Sensitivity/uncertainty analysis using KENO-VI 5 - 3D sensitivity/uncertainty analysis using KENO-VI
tsar	- Reactivity sensitivity analysis
tsunami-ip	- TSUNAMI indices and parameters for validation
tsurfer	- TSUNAMI data assimilation tool for validation
sampler	- Stochastic uncertainty analysis for any SCALE sequence
sams	- TSUNAMI sensitivity analysis module
xsproc	- Problem-dependent multigroup cross section processing
mcdancoff	- Monte Carlo Dancoff factor calculation using KENO-VI
shell	- Module to access operating system commands

Quick start

- Create empty file (origami.inp)
- CTRL+SPACE inside empty file
- Choose "origami UO₂ express form (configurable)"

NOTE: ORIGAMI was *intended* to replace the need for ORIGEN-ARP GUI

ORIGAMI Express Form (continued)

www.Fulcrum	? ×
Parameters	
Origami	
Title	this-is-my-title 👻
Fuel Type	w17x17
Uranium (MTU)	1.0 🔻
Enrichment (Wt	\$U235) 4.5 🗸
Burnup (MWd/MT	U) 40000 🗸
Cycles	3 🔹
Number of Burn	up Interpolations per Cycle 4
Cooling Time (days) 1825 🔹
Power History	- Percent Up 95
Power History	- Average Power (MW/MTU) 40
Moderator Dens	ity (g/cc) 0.7332 -
	Create Create as new file Parameter se
	Template engine results Template engine log Template engine view
	OK Cancel
	A.

- Window will appear
- Click "Create"
- Click "OK"

ORIGAMI input (in brief)

origami.inp* 🗵					
document V SCALE 6.2 V Run V					
1=origami					
2					
³ title="this-is-my-title"					
<pre>4 options{ mtu=1.0 ft71=all}</pre>					
⁵ libs=["w17x17"]					
<pre>6 fuelcomp{</pre>					
<pre>7 uox(fuel) { enrich=4.5 }</pre>					
<pre>8 mix(1) { comps=[fuel=100] }</pre>					
9 }					
modz = [0.7332]					
¹¹ pz=[1.0]					
12 hist[
<pre>13 cycle{ power=40 burn=333.33 nlib=4 down=16.67 }</pre>					
<pre>14 cycle{ power=40 burn=333.33 nlib=4 down=16.67 }</pre>					
<pre>15 cycle{ power=40 burn=333.33 nlib=4 down=0 }</pre>					
<pre>16 cycle{ down=1825 }</pre>					
17]					
18					
¹⁹ end					
20					
21					

- **title** set a descriptive title
- **options** various global options
- fuelcomp declare mixtures (single mixture problems use 1)
- modz axial moderator density
- **pz** axial power shape
- hist operating history

View ORIGAMI .f71 in Fulcrum

 .f71 has all regions, all times

 .assm.f71
 has only final time for each axial zone and total

ORIGAMI Automator

- setup of assembly details
 - click through GUI
 - import via JSON or CSV
- simple time-dependent location declaration for assembly
 - Spent Fuel Pool
 - Dry Storage
- assembly grouping capability based on location, e.g. Decay Heat in SFP over time
- for more information see primer in SCALE install directory

docs/Primers/ORIGAMI Automator.pdf

CRAM (new) vs. MATREX (old): 100-day decay of spent fuel

National Laboratory

Updated ORIGEN Reactor Libraries

SCALE 6.1

- most data was generated in SCALE 5.1
 - BWR and PWR libraries generated using TRITON 2-D models
 - some libraries were pre-SCALE-5.1, generated using SAS2H (1-D) models
 - based on ENDF/B-V, 44-group cross-section data for neutron transport
 - NITAWL cross-section processing used with TRITON
- Outdated modeling assumptions (not consistent with recent SCALE capabilities and nuclear data)
- Selected libraries have been generated under different projects since 2006, but not released with SCALE

SCALE 6.2

- Automation tool (SLIG) allow reactor libraries to be generated with each official release of SCALE
- New libraries are based on current
 ORNL modeling best practices
 - 252-group ENDF/B-VII.1 cross-section library for the neutron transport solution
 - CENTRM cross-section processing for the NEWT transport solver
 - Specialized Dancoff factors for BWR corner and edge pins
 - Finer spatial solution grid than previously used
 - Updated models with better assumptions and sources of information
 - Updated MOX data with radial zoning
- downside: now 6.9GB of data (was 2.4GB)

What do you get for 7GB?

- Pressurized Water Reactors (PWRs)
- Boiling Water Reactors (BWRs)
- Mixed-oxide (MOX) libraries for typical BWRs and PWRs
- Russian VVER reactors
- Russian RBMK reactors
- Canadian CANDU reactors
- UK Advanced Gas Reactors (AGRs)
- MAGNOX Reactors
- IRT Reactors

Summary ORIGEN-S 6.1 → ORIGEN 6.2

Refactored manual

- Reorganized
- Refined terminology around "libraries"

Changed file formats

- Text output file (.out)
- Binary output files (.f71, .f33)

New User Interfaces

- ORIGEN itself uses SON now
- Main GUI is Fulcrum
- New spent fuel isotopics interface, ORIGAMI
- New ORIGAMI Automator GUI
- New solver
 - CRAM solver (will be default in 6.3)

Changes to nuclide ids

- Default is more SCALE-standard IZZZAAA
- Also accept symbolic ids "u235m"
- Introduced character sublibs
 1→LT, 2→AC, 3→FP

Changed defaults for emission spectra

- pay attention to conserve_line_energy!

ORIGEN reactor libraries

- Updated using ENDF/B-VII.1 data
- New reactor types
- Generated using consistent, traceable methodology (SLIG)

ORIGEN API

• API for ORIGEN has been main funding source of all development

NEAMS primary (also CASL, LDRD)

- Documentation: google "ORIGEN API"
- Main Capabilities
 - Avoid file I/O!
 - C/C++/Fortran interfaces to perform coupled depletion and transport
 - Collapse multi-group flux
 - Provide self-shielded one-group XS

- Create transition matrix A
- Deplete over a step
- Supports flux in arbitrary group structure (fast/thermal/etc. does not matter)
- Integrations
 - SCALE (ORIGEN, TRITON, Polaris)
 - CASL/MPACT full-core, pin-by-pin (almost pellet-by-pellet) depletion
 - SHIFT standalone
 - PROTEUS (ANL unstructured mesh transport)
 - BISON (INL fuel performance)
 - CYCLUS (fuel cycle)

SCALE 6.3

• Main goal: Grand Unification ARP+COUPLE+ORIGEN+OPUS→ORIGEN

- Make ORIGEN a cohesive sequence for set up, calculation, and post-processing
- Deprecate family members
 - ARP library interpolator
 - COUPLE library management
 - OPUS post-processor
- Fold member capability into ORIGEN directly
- SCALE-wide goal: Update to ENDF/B-VIII data ______
 - Second metastable nuclides, e.g., ^{135m2}Xe
 - revise "general" (2237) nuclide set

