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Motivation
• Multiple industry stakeholders have approached CASL 

about capability for modeling sub-critical, source driven 
problems
– ICRR predictions (boron dilution accident)
– Secondary source design and optimum placement
– Excore detector response during core loading sequences

• VERA has potential to provide unique capability, which 
could impact plant operations, reduce outage times, or 
reduce costs associated with components
– Better than Monte Carlo methods due to high-fidelity 3D 

characterization of fuel rods and components, and ability to track 
fuel assemblies over multiple fuel cycles

– Better than nodal methods due to 3D neutron transport and direct 
modelling of the excore detectors
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Secondary Source Rods
• Antimony-Beryllium (SbBe) rods provide a fast neutron 

source during startups to ensure adequate signal in 
excore detectors during fuel loading and approach to 
criticality

• Sb-123 is activated by neutron absorption and becomes 
Sb-124, which decays by gamma emission with a half-life 
of 60.2 days.

• Be-9 produces a photoneutron reaction from the Sb-124 
gammas, releasing ‘monoenergetic’ neutrons

• Typical source rods are about 2/3rd of the active fuel 
height, offset toward the bottom, with 6 rods per assembly
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Secondary Source Rods

Watts Bar Unit 1 FSAR, Figure 4.2-21
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SbBe Activation in VERA

• ORIGEN is used within MPACT to deplete the Sb-123 
and produce/decay Sb-124 on the fine depletion mesh 
during a fuel cycle depletion

Sb-124 distributions in SbBe rod at 
EOC Cycle 7 



6

SbBe Insert Shuffling
• The SbBe rods are moved into new or reinsert fuel 

assemblies after activation
• MPACT capability of insert shuffling during a refueling 

outage has been added, along with the existing ability to 
shuffle fuel

• Automatic decay is performed on the Sb-124 regions 
(60.2 day half-life) during the refueling outage

Decay in Sb-124 in the six rods as a 
function of outage length 

10 20 30 40 50 60
Days
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Neutron Sources
1. Be-9 photoneutrons

– ORIGEN/SCALE does not include (gamma,n) reaction data
– Analysis performed with MCNP to determine the Be-9 source 

strength as a function of Sb-124 decays
• MPACT used to develop representative isotopics in a 2D lattice
• ORIGEN used to determine the gamma sources from Sb-124 and 

depleted fuel
• MCNP used to transport the gammas and tally the photoneutron

reaction rate
– VERA input created to provide neutron source strength and 

spectrum for each Sb-124 bearing region
• Currently using 700,000 n/s/Ci of Sb-124

2. Neutrons emitted from depleted fuel are determined by 
ORIGEN for each depletion region in the core

– Spontaneous fission, (α,n) reactions, delayed neutron sources
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Detailed Source Distributions – Sb-124

Fast Flux Distributions near the SbBe
rods at the Beginning of WB1C8
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Detailed Source Distributions – Burned Fuel

Fast Flux Distributions without the SbBe rods 
at the Beginning of WB1C8

Note:  In this case the source strength from burned fuel 
is ~1% of that from Sb-124  
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Sub-Critical Multiplication in MPACT

• In the short-term, a 3D pin-wise diffusion solver was 
implemented in MPACT to calculate the flux distribution 
from fixed-source problems
– Fast and stable
– May be accurate enough for providing the fission source to Shift

• An SN transport solver may be available in the future 
through other activities

• Long term goal is to bypass this feature and give all the 
sources directly to Shift
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Shift Excore Transport
• The detailed 3D fission source 

calculated by MPACT is 
transferred to Shift for transport 
out to the source range detector

• CADIS can be used to 
accelerate the calculation and 
reduce the variance of the 
detector tally
– B-10 and U-235 detector types are 

supported

• Detailed excore model for Watts 
Bar created using Omnibus 
general geometry capability

Source Range Detector

Note:  The Shift capability is not quite functional yet for this application.  
Results should be available soon.
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Applying to WB1C8 Refueling

• TVA provided core loading sequence and measured 
detector signals for WB1 Cycle 8

• Simulation includes first 10 moves
• Two secondary source assemblies

– South assembly activated in WB1C7 (in SE quadrant of quarter-
core calculation)

– North assembly approximated as rotated version of southern
– Sources are in fresh fuel assemblies

• Source strength and spectrum based on MCNP 
calculations (700,000 n/s/Ci Sb-124)

• Refueling includes all inserts (sources, WABA, RCCAs)
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Preliminary Analysis

• Full Core 3D MPACT used to estimate thermal flux 
outside of the vessel NEAR the source range detector
– Single point at core mid-plane is selected

• MPACT using subcritical fixed-source diffusion solver
• Expanded excore reflector model used to visualize 

calculated flux distribution
• Each refueling step modeled up to a 3x3 on the south 

side of the core 
• Ran on Titan with 3600-26,220 cores
• Thermal flux response compared to measured detector 

signal provided by TVA (renormalized)
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Step 1
Two source-bearing fresh assemblies on periphery
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Step 2
Add burned fuel
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Step 3
Add burned fuel
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Step 4
Add burned fuel
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Step 5
Add fresh fuel with IFBA one row in
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Step 6
Add burned fuel with RCCA one row in
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Step 7
Relocate southern source-bearing assembly
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Step 8
Add burned fuel with RCCA
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Step 9
Add fresh fuel with WABA
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Step 10
Add burned fuel with RCCA

9B
RCCA

10A
4W

9B
RCCA

10B
SS

9B
RCCA 10B

8B 8A 8A



24

Additional Picture
Fully Loaded on Same Scale
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Additional Picture
Fully Loaded on Different Scale
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Preliminary Detector Comparison

• Single thermal flux response comparison at core-
midplane
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Next Steps

• Calculate source range detector response for the core 
loading and compare to measured data

• Validate against data where secondary sources are 
placed in burned fuel assemblies

• Support TVA in further analyses of previous cycles and 
future cycles using the CASL tools

• Apply and validate these methods in an ICRR approach 
to criticality
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