Shielding Capabilities in SCALE 6.2

Monaco/MAVRIC

Douglas E. Peplow Tuesday, Sept. 26, 2017

Thomas M. Miller

Cihangir Celik

ORNL is managed by UT-Battelle for the US Department of Energy

Monaco/MAVRIC Shielding Tools

- Replaces MORSE and SAS sequences
 - Introduced with SCALE 6 (Jan 2009)
 - Significant improvements in SCALE 6.1 (Jun 2011)
- Monaco Monte Carlo transport
 - Based on MORSE/KENO physics
 - SCALE General Geometry Package (SGGP), same as KENO-VI
- MAVRIC Sequence of Denovo and Monaco
 - <u>Monaco with Automated Variance Reduction using Importance Calculations</u>
 - SCALE sequence which:
 - Computes cross sections
 - Performs a Denovo adjoint calculation, forms importance map and biased source distribution
 - Runs Monaco
- Focus make it easy on the user

Changes from SCALE 6.1 to 6.2

- Areas of significant change
 - Continuous energy treatment
 - physics, dose responses, tallies
 - More/better links to ORIGEN for source terms
 - Read spectrum from binary concentration file
 - Read in photon lines/intensities from ORIGEN data
 - Improved statistical tests on tallies
 - New statistical tests for mesh tallies
 - Improvements on linking with Denovo
 - Macromaterials for better deterministic models
 - Denovo more parameters, double precision output
 - Improved link with KENO-VI for CAAS Problems
 - MAVRIC Utilities for post-processing

Monaco – fixed-source Monte Carlo

- Multi-group (MG) cross sections
- Continuous-energy (CE) cross sections June

Monaco - Sources

- Define re-usable distributions
 - Built-in distributions
 - Watt spectrum, cosine, exponential
 - MG fission neutron distributions
 - Read an ORIGEN binary concentration (*.f71) file
 - Look up discrete gammas from ORIGEN library
 - User-defined distributions
 - Binned histogram
 - Point/value function pairs
 - Discrete lines
 - Display distributions in ChartPlot, run sampling tests
- Include any number of neutron and photons sources
 - Uses defined distributions for energy, space and angle

Monaco Responses

- Built-in responses
 - Flux-to-dose rate conversion factors

	Neutron I	Energy	Photon I	Energy	
Response	Range (I	MeV)	Range (MeV)	
Henderson conversion factors	0.01	18	0.01	10	
Claiborne-Trubey conversion factors			0.02	16	
ANSI standard (1977) flux-to-dose-rate factors	2.5E-08	20	0.01	15	Imp
ANSI standard (1991) flux-to-dose-rate factors	2.5E-08	14	0.01	12	inpi
ICRU-44 Table B.3 (air) Kerma	2.5E-08	29			
ICRU-57 Table A.21 (air) Kerma			0.01	10	
Ambient dose equivalent (ICRU-57)	1.0E-09	20.1	0.01	10	
Effective dose (ICRU-57)	1.0E-09	18	0.01	10	

oved !

Reaction rates from cross-section library

- User-defined responses
 - Binned histogram
 - Point/value function pairs

National Laboratory

Monaco - Tallies

- Basic tally types for flux
 - Region tally
 - Point detector
 - Mesh Tally
- Add any number of responses
- Energy binning
 - automatic in MG
 - User-specified in CE

Final Tally Results Summary						
Neutron Point Detector : tally/quantity	2. example p average value	oint detector standard deviation	relat uncert	FOM (/min)	stat checks 1 2 3 4 5 6	
uncollided flux total flux response 1	5.28059E-03 9.76163E-01 7.55800E-05	3.15856E-06 1.06422E-03 8.63873E-08	0.00060 0.00109 0.00114	8.39E+04 7.64E+04	x x x x x x x x x x x x x x	
Neutron Region Tally 4 tally/quantity	. example re average value	gion tally standard deviation	relat uncert	FOM (/min)	stat checks 1 2 3 4 5 6	
total flux (tl) total flux (cd) response 1	9.75719E-01 0.00000E+00 7.55800E-05	5.54774E-05 8.63873E-08	0.00006	3.09E+07 7.64E+04	x x x x x x x x x x x x x x	

- Statistical tests for convergence
- Statistical tests for mesh tally convergence

Statistical Checks – Reg. and Point Det.

				Well-Converged		Not-Yet-Converged			
<u> </u>	Quantity/Test mean	Goal = 0.00	Within ±0.10	Average	$ \begin{array}{c} 20 \\ 19 \\ 18 \\ 17 \\ 16 \\ 15 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ \end{array} $	$ \begin{array}{c} 20 \\ 19 \\ 18 \\ 17 \\ 16 \\ 15 \\ 0 \\ 5 \\ 10 \\ 15 \\ 10 \\ 15 \\ 20 \\ 10 \\ 15 \\ 20 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$			
2.	relative slope of linear fit standard deviation exponent of power fit	= -0.50	$R^2 > 0.99$	Uncertainty	0.75 0.7 - 0.65 - 0.6 - 0.55 -	1.6 1.5 1.4 1.3 1.2 1.1			
3. 4.	relative uncertainty final value relative VOV	< 0.05	$R^2 > 0.95$						
5.	exponent of power fit relative VOV final value	< 0.10	K 2 0120	VOV	0.0016 0.0014 0.0012 0.001 0.0008				
6.	figure-of-merit relative slope of linear fit	= 0.00	±0.10		850	180 170 -			
	Improved !			FOM		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

Statistical Checks – Mesh Tallies

	Quantity	Test	Goal	Within
1.	ζ , fraction with score	relative slope of linear fit	= 0.00	±0.10
2.	\bar{r} , mean relative uncertainty	exponent of power fit	= -0.50	$R^2 > 0.99$
3.	variance of \bar{r}	exponent of power fit	= -1.00	$R^2 > 0.95$
4.	figure-of-merit	relative slope of linear fit	= 0.00	± 0.10

2.00E-02 - 3.00E-02

1.00E-02 - 2.00E-02

0.00E00 - 1.00E-02

problem.out

Photon Mesh Tally 1.

tally/quantity	zeta	mean	var of	FOM	passed
	value	rel unc	rel unc	(/min)	1 2 3 4
flux, bin 0	0.8221	2.78E-01	1.01E-09	1.43E-02	X
tot flux, bin 0	0.9870	6.43E-02	5.60E-10	2.67E-01	X X X X
resp 5/bin 0	0.9870	5.22E-02	2.80E-10	4.06E-01	X X X X

problem.mt1.resp5.out

Mesh Tally Statistical Checks - relative variance density function (fits are over the last half of the simulation)

quantity	check	goal	actual	R**2	pass
1 fraction with score 2 mean rel. uncert. 3 var. of rel. uncert. 4 figure-of-merit (FOM)	rel slope of linear fit exponent of power fit exponent of power fit rel slope of linear fit	0.00 -0.50 -1.00 0.00	0.0000 -0.4922 -1.0114 -0.0159	0.9997 0.9999	yes yes yes yes

Monaco

- Output
 - Provides feedback for checking input
 - Distributions and responses make *.chart files
 - Grid geometries and cylindrical geometries (***) make *.3dmap files
 - Geometry *.png files (like Keno)
 - Tallies
 - Summarized in main SCALE output file
 - Details saved in files (energy groups, convergence details)
 - Java Viewers replaced by Fulcrum
 - ChartPlot
 - MeshFileViewer

MAVRIC – Automated Variance Reduction

- Variance reduction parameters for Monte Carlo are often difficult to compute
- MAVRIC is designed to automate variance reduction
 - Use Denovo deterministic solution to create an importance map and a consistent biased source(s)
- Methods
 - CADIS
 - Optimizes a single response in a single tally
 - Requires an adjoint deterministic calculation
 - FW-CADIS
 - Optimizes several tallies or a mesh tally
 - Requires 1 forward and 1 adjoint deterministic calculation

Example Problem: Simplified TN24P Cask

Spent fuel: neutrons and photons Activated hardware: photons

Objective: Determine dose rates at various points outside of the cask

Analog

- Analog Monte Carlo
 - Sample a source particle
 - Position
 - Direction
 - Energy
 - Simulate its natural path
 - Distance before interaction
 - Sample possible interactions

Run Time: 100 hours

Can be slow to converge!

CADIS - Accelerate a single tally

Denovo 12 m; Monaco 45 m

Define the adjoint source = response

$$q^+(\vec{r}, E) = \sigma_d(\vec{r}, E)$$

Compute the adjoint flux $\phi^+(\vec{r}, E)$

Estimate the detector response

$$R = \int_{V_s} \int_E q(\vec{r}, E) \phi^+(\vec{r}, E) dE dV$$

Construct weight windows $\overline{w}(\vec{r}, E) = \frac{R}{\phi^+(\vec{r}, E)}$

Construct biased source

$$\hat{q}(\vec{r},E) = \frac{1}{R}q(\vec{r},E)\phi^+(\vec{r},E)$$

Use in the Monte Carlo

FW-CADIS – multiple tallies or mesh tallies

Denovo 17 m, 13 m; Monaco 90 m

Adjoint source corresponds to the area to be optimized by the Monte Carlo - more adjoint source in low-flux areas - less adjoint source in high-flux areas Estimate the forward flux $\phi(\vec{r}, E)$ $R(\vec{r}, E)$ Estimate the dose rate Adjoint source $q^+(\vec{r}, E) = \sigma_d(\vec{r}, E)/R(\vec{r}, E)$ -- now same as CADIS --Compute the adjoint flux $\phi^+(\vec{r},E)$ Construct weight windows $\overline{w}(\vec{r},E)$ Construct biased source $\hat{q}(\vec{r},E)$ Use in the Monte Carlo

MAVRIC

- Sequence can be run in parts
 - Go so far, review adjoint calcs, importance maps, biased sources
 - Reuse previously computed files
 - Use MAVRIC to run Denovo (serial)
- More accurate deterministic calcs give higher MC FOM
 - More meshes, more angles, more scattering components...
 - Macromaterials Improved !

MAVRIC Utilities

- Help the user in post-processing results
- Mesh Tally files (~20)
 - Display overview, add, subtract, multiply, divide, scale, invert
 - Filter (keep values above or below a given value)
 - Find location of minimum or maximum
- Denovo Flux files (~15)
 - Similar to above
- Others
 - Display overviews of other file types
 - Convert importance map to MCNP wwinp file

MAVRIC Utilities – UNF Dose Rates

geometry

		15 year	rs after	25 years after		
		last discharge		last discharge		
Loc	ation	mrem/hr	rel. unc.	mrem/hr rel. unc.		
	Тор	0.23	8%	0.16	8%	
v	Upper Radial	27.78	3%	18.98	3%	
Casl	Middle Radial	19.98	14%	12.45	3%	
Ŭ	Lower Radial	85.27	2%	57.50	2%	
	Bottom	1.06	7%	0.34	9%	
PB	Radial	11.89	2%	7.94	2%	
	Тор	0.13	6%	0.08	5%	
2 m	Radial	4.28	2%	2.77	3%	
	Bottom	0.19	10%	0.10	5%	
					5 5 X X X X	

KENO Source for Monaco/MAVRIC

- Developed for modeling criticality accident alarm systems
- KENO-VI Improved !
 - Define a grid geometry
 - Set a flag to store fission density tally
 - Stores $\bar{\nu}$ (neutrons per fission)
- MAVRIC utility
 - Convert fission density into source distribution
- Monaco/MAVRIC
 - Use a 'meshSource'
 - Specify fission/sec or neutrons/sec

```
src 1
    meshSourceFile="C:\mydocu~1\caasExample\fissionSource.msm"
        origin x=600 y=650 z=400
    fissions=1.0e17
end src
```


lational Laborato

ORIGEN for Source Energy Distribution

ORIGEN

- Set energy bins (n, p, or both)
- Save a binary concentration (*.f71) file
- Monaco/MAVRIC
 - Define an energy distribution

Improved !

special="origensBinaryConcentrationFile"
filename="c:\somewhere\reactorFuel.f71"
parameters C S end
end distribution

- This is a histogram
- Or, use ORIGEN data directly

- Discrete distribution

distribution 5
 special="origensDiscreteGammas"
 parameters Z A end
end distribution

National Laboratory

Modern Storage Site

Modern Storage Site

MAVRIC Approach

- Detailed 3D model of Phase I
 - 467 storage casks
 - Vertical and horizontal
- Need dose rate (mrem/yr) at site boundary

MAVRIC Approach

- Monte Carlo will take a long time to sample 467 casks well
- Needs variance reduction but the Denovo mesh would require an unbelievable ginormous amount of memory
- Solution: use full geometry but only consider source in one cask at a time (parallelize on source)
 - Denovo mesh can focus on one cask, with larger meshes far away

ational Laboratory

Results - Dose rate at ground level

