CyBORG: Employing the Origen API
in a Fuel Cycle Simulator

Steven E. Skutnik

University of Tennessee-Knoxville

2017 SCALE Users’ Group Meeting
Oak Ridge National Laboratory

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Agenda

* |ntroduction to the modernized
Origen APl in SCALE 6.2

* The need for physics-based depletion
in fuel cycle assessment

 CyBORG: Integrating Origen into the
Cyclus nuclear fuel cycle simulator

* Handling generalized cross-section
interpolation

Skutnik - CyBORG: Employing the Origen API

Introduction to the modernized Origen APl in
SCALE

Directly accessing Origen depletion methods &
embedding depletion capabilities into other
code frameworks

Basic topology of the Origen API: Concentrations

| Coen i
|
|
I ,____i____\
NuclideSet : : NuclideResource :

am - o - - o . . . -

Skutnik - CyBORG: Employing the Origen API

Basic topology of the Origen API: Library

[
L

LibraryHeader

TransitionCoeff

g Interp. tags

g |D tags

g TagManager

g DecayData

Ut I

Problem-dependent data
associated with specific
spectra & burnups

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

Interfacing with the Origen solver (C++)

Origen C++ class

Binary file /0

C++/ C binding layer

C / Fortran binding layer

Origen Wrapper Class (Fortran)

Solver

Skutnik - CyBORG: Employing the Origen API

Fortran wrapper interface

Origen C++ class

Binary file /0

C++/ C binding layer

C / Fortran binding layer

User > Origen Wrapper Class (Fortran)

Solver

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

Building upon the Origen APl as a foundation

* With the ability to call Origen from a variety
of in-memory interfaces, it becomes possible

to develop new applications on top of the
Origen solver interface

* Examples of this include:

* The ORIGAMI interface for 3-D point depletion
of fuel assemblies & source term generation

* The CyBORG physics-based depletion reactor for
the Cyclus fuel cycle simulator

Skutnik - CyBORG: Employing the Origen API

ORIGAMI 1s an example of an Origen interface built upon
the new Origen AP

* The ORIGAMI interface for
Origen treats the assembly as
multiple axial and radial depletion
“nodes”

* Each“node” has a power “shaping”
factor to account for axial and
radial differences in the burnup distribution

* Radial nodes can also have different libraries —
accounting for local differences in neutron spectrum

Skutnik - CyBORG: Employing the Origen API

ORIGAMI: A new way to use Origen

')

., @
Origen -

@)

Skutnik - CyBORG: Employing the Origen API

On the need for integrating physics-based
depletion into fuel cycle assessment tools

Thermal-spectrum one-group cross-sections are highly
sensitive to burnup & initial compositions

Pu-240 Absorption Cross Section in Reference Origen BWR Libraries at 70,500 MWd/MTIHM

460
440
420
400

380

Cross Section (barns)

360

340

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Skutnik - CyBORG: Employing the Origen API

Reaction cross-sections show much higher sensitivity
to perturbations in thermal energy region vs. fast

: : : : : : :] ———24-Pu-238(n,total fission) ENDF/B-VII.1
Eed 4 ﬁ —— 94-Pu-239(ntotal fission) ENDF/B-VIL.1
: : : : : : : : —— 54-Pu-240(nfotal fission) ENDF/B-VIL.1
—04-Pu-241(n ion) ENDF/B-VII.1
{ ion) ENDF/B-VIL1 |

(b)

Cross Section

L] Ll L Ll : : = : Ll L Ll L L]
E-5 E-4 E-3 E-2 E-1 E+0 E+1 E+2 E+3 E+4 E+5 E+6 E+7

TENNESSEE [§

KNOXVILLE

Example: EG29 scenario

Fast spectrum: low CX sensitivity:
Physics desirable, not “necessary”

Thermal spectrum: high CX sensitivity:
CXs highly sensitive to (dynamic) initial Pu
composition & burnup; physics necessary

Fl::‘l)::’ ;1;‘;1,::!9; ;al Nudeiax Fuel by Fuel Nu‘:.i:;:;‘:;;l:mf Repmces.singj Bad:-en!i Storage and
other Stage Typ (NDPPTY Separations Disposal
_ _ Y Puw/RL
From ST-HWRU 5l FT_| | Metal dri\rcﬁg% 5;%}:2‘ 'MA :"‘O —To ST-1
NU———> fuel ! _ (drivgf+blanket) —'—;O—"&
Stage 1 > SFR DF J
6T1) RU _[CR=1 /[N PuR
From ST-1—== s FT-1.2 Metal blanket U Sep-B Metal - To ST-2
NU=——>% fuel I Separations = A
(blanket only) RU O » To ST-1

Puw/RU _

Pu/RU
- —~
@, I'oST-2

Stage 2 From ST-1===—== £1 5 | Mixed Oxide Sep-C MOX
(ST-2) gy 572 PURU S| driver fuel Separations JaEe_ A

Note: Only primary material flows are shown. Material flows from imperfect separations (losses), low-level waste, and other secondary streams
that will be produced in performing various fuel cycle functions are not shown.

Legend:

NU = Natural Uranium DF =Discharged Fuel PWR = Pressurized Water Reactor = Nuclear Waste Disposal

DU =Depleted Uranium FP =TFission Products SFR = Sodium Fast Reactor = Nuclear Material Storage
LEU = Low-enriched Uranium TRU = Transuranics UO0X = Uranium Oxide —= = Nuclear Material Transport
RU = Recovered Uranium MA = Minor Actinides MOX = Mixed Oxide Pu/RU = Co-separated products

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

MOX 17x17 (PWR)
8% Pu / NU 61.1 kgPu /
A taIe Of two MOXES 33 GWd/MTHM iMT MOX
| MTHM basis Pu242
4%
Pu-241
A ‘ %
e * — Pu-238
GWd4d/MTU >
WI17x17 (PWR)

59.9 kgPu /

4.0 % enrichment iMT MOX

Pu-242
49.0 l: o
GWd/MTU

~_ Pu-241
6%

Pu-238

3%

THE UNIVERSITY OF

TENNESSEE i §

KNOXVILLE

Development and function of an Origen-based
Reactor Analysis module (CyBORG)

Cyclus 1s an agent-based nuclear fuel cycle simulator
based upon a dynamic resource exchange engine

* Cyclus is an open-source fuel cycle simulator developed &
maintained by the University of Wisconsin-Madison

* Relies on an agent-based framework wherein fuel cycle
facilities are represented as individual “agents”

* Individual facility behaviors are described by “archetypes,’ which
interact with the simulation by means of resource exchange

* Agents can express ranked “preferences” for material types / flows

* Cyclus’ kernel, the dynamic resource exchange,

seeks to satisfy all resource bids
(buy/sell) within the system
http://fuelcycle.org : @

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

http://fuelcycle.org/

Introducing CyBORG: Cyclus-Based Origen

Assimilating
physics-based
depletion into fuel
cycle scenario
development

Skutnik - CyBORG: Employing the Origen API

How do we incorporate Origen into Cyclus?

* Newest Origen API facilitates direct,
in-memory calls to Origen solver

* By developing a portable, embeddable
“depletion engine,” Origen operations can
be “wrapped” into a Cyclus-friendly format

* “Depletion engine” builds from Origen API (from
shared SCALE/Origen libraries)

* CMake-based configuration allows for easy
incorporation of required libraries & headers

Skutnik - CyBORG: Employing the Origen API

CyBORG provides physics-based flexibility for reactor
simulations within Cyclus via coupling with Origen

Input fuel recipe

Fuel cycle data

suonisodwod
[eniy|
SJ9MOd

Output
compositions

Output fuel recipe>

C++ primitives only!
(no proprietary types)

Cycle burnup(s)

Assembly type

reactor data
Interpolable params

libraries

e o o o [o o o o e e e

Problem-specific reactor data

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API

TENNESSEE

KNOXVILLE

A CyBORG “shim layer” connects the Origen API to
Cyclus while 1solating Origen data types

* Goal of the “shim layer” is to connect Origen
capabilities into an outside ecosystem without
requiring awareness of Origen-specific types (and
vice versa)

* Data types passed through as C++ primitives & standard
library types
* Shim layer performs “packaging” and “unpackaging”
of Origen-specific data types (e.g., concentrations,
interpolated reactor libraries, etc.)

Skutnik - CyBORG: Employing the Origen API

CyBORG balances the performance cost of depletion
via a “hash-and-cache” recipe generation strategyT

* Because of the relative cost of depletion (and
reactor data library interpolation) relative to
simulation time, we only to invoke physics-
based depletion when necessary

* Solution: Cache output recipe (generated
via depletion) to a unique hash based on
relevant depletion conditions

* e.g., initial enrichment, fuel type, discharge burnup

TSpecial thanks to Paul Wilson from UW-Madison for this idea

Skutnik - CyBORG: Employing the Origen API

Generalized reactor data interpolation and
processing within CyBORG

Accurate depletion calculations require problem-
dependent nuclear data

* Problem-specific nuclear data is required to

dynamically produce accurate output inventories
* Flux spectrum evolves with initial enrichment, void,
burnup, etc.

* Origen handles this through interpolating pre-
generated libraries to problem-specific conditions
(e.g., initial enrichment, burnup, etc.)

* Libraries developed transport calculations

* “Assembly average” cross-sections

Skutnik - CyBORG: Employing the Origen API

Example dimensions for N-D interpolation

Each parameter is treated
as orthogonal, creating an
N-dimensional interpolation
(hyper-)space

Initial composition

Interpolation dimensions are
unspecified until problem time

(i.e., space is created dynamically)

Void fraction

Temp. / power level

N-D space collapsed to |-D and then interpolated
along burnup dimension for problem-specific burnups

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

N-dimensional interpolation approach

! J
@ @ (& (@]
|. Determine adjacent |-D
“knots” for each dimension
2. Determine independent
. Q@ Q Q ©Q Q
weight factors for each ;
dimension ®-—- ® (u'v’)
3. Apply appropriate weights
to cross-section data across ¢ ® Q °
each dimension
Q Q Q Q

THE UNIVERSITY OF

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

Generalized interpolation allows new reactor types to
easily be modeled using CyBORG

* Origen Library objects are correlated to
interpolation data via the TagManager

* Defines interpolable dimensions; e.g., initial
enrichment, void fraction, etc.

* New libraries can easily be generated using
the TRITON sequence in SCALE

Skutnik - CyBORG: Employing the Origen API

Conclusions

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

The modern Onigen API affords flexible depletion
capabilities within larger frameworks

 CyBORG is but one example of how the Origen

API| can be applied outside of SCALE (building
from the shared libraries & public API)

* In the case of CyBORG, this allows for on-the-fly
physics-based depletion given dynamic input fuel
compositions

* Other frameworks may also benefit from
embedding depletion, activation and decay
capabilities via the Origen API

Skutnik - CyBORG: Employing the Origen API

Current status of CyBORG & Origen API

 CyBORG is designed to work with the latest SCALE
6.2.2 release

* CyBORG vI.0 is now available for download and is
fully compatible with Cyclus v1.5

* CyBORG source (including build configuration) &
Origen APl documentation available online

CyBORG repository: https://github.com/sskutnik/cyborg

Origen API docs: https://wawiesel.github.io/OrigenAPI-Demo/

Skutnik - CyBORG: Employing the Origen API TENNESSEE T

KNOXVILLE

https://github.com/sskutnik/cyborg
https://wawiesel.github.io/OrigenAPI-Demo/

Acknowledgements

* This work has been funded by a Nuclear Energy
University Programs (NEUP) grant sponsored by the
U.S. Department of Energy, Office of Nuclear Energy,
award number DE-NE0O000737

* Special thanks to Will Wieselquist (ORNL) who has
collaborated on this development and leads
development on the Origen API

Skutnik - CyBORG: Employing the Origen API

