Skip to main content
SHARE
Publication

Strain-induced lead-free morphotropic phase boundary

Publication Type
Journal
Journal Name
Nature Communications
Publication Date
Page Number
7766
Volume
16
Issue
1

Enhanced susceptibilities in ferroelectrics often arise near phase boundaries between competing ground states. While chemically-induced phase boundaries have enabled ultrahigh electrical and electromechanical responses in lead-based ferroelectrics, precise chemical tuning in lead-free alternatives, such as (K,Na)NbO3 thin films, remains challenging due to the high volatility of alkali metals. Here, we demonstrate strain-induced morphotropic phase boundary-like polymorphic nanodomain structures in chemically simple, lead-free, epitaxial NaNbO3 thin films. Combining ab initio simulations, thin-film epitaxy, scanning probe microscopy, synchrotron X-ray diffraction, and electron ptychography, we reveal a labyrinthine structure comprising coexisting monoclinic and bridging triclinic phases near a strain-induced phase boundary. The coexistence of energetically competing phases facilitates field-driven polarization rotation and phase transitions, giving rise to a multi-state polarization switching pathway and large enhancements in dielectric susceptibility and tunability across a broad frequency range. Our results open new possibilities for engineering lead-free thin films with enhanced functionalities for next-generation applications.