For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For his internationally recognized accomplishments in high-energy physics, radiation transport, and detector and neutron target research and development.
For significant contributions and leadership in the processing and properties of materials, particularly intermetallic alloys, which have led to his reputation as one of the world's leading scientists in these areas.
For theoretical research on the electronic and vibronic structures and optical properties of defects in ionic crystals, and for work at the forefront of the rapidly developing field of laser annealing of semiconductors, leading to advances in the photovoltaic conversion of solar energy.
For advances in neutron and gamma-ray dosimetry, the transport of electricity through gases, and the development of laser-based one-atom detection with applications in nuclear physics, solar neutrino research, and oceanic, geologic, and environmental research
For research on the processes involved in the induction of mutations, elucidating the roles and sequences of DNA repair and replication in converting radiation or chemical damage into mutations, and for contributions to the understanding of biological control mechanisms at the cellular level