For his pioneering research in atom probe field-ion microscopy and atom probe tomography, most recently to understand the unprecedented properties and behaviors of nanostructured ferritic steels.
For innovative research in nuclear structure physics, particularly in areas leading to a quantitative understanding of the excitation and decay of the elementary collective modes of nuclei, and for vision and scientific and technical leadership in building the Holifield Radioactive Ion Beam Facility into a forefront laboratory for nuclear science.
For outstanding contributions to the field of applied computer vision research and development that address important national interests in industrial and economic competitiveness, biomedical measurement science, and national security.
For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For fundamental contributions to many areas of theoretical solid-state physics that directly relate to experimental programs, including the electronic structure and magnetism of transition and rare-earth metals, metal-electrolyte interfaces, superconductivity, and physical properties of heavy fermion, mixed valent, and fractal materials
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For fundamental studies in radiation physics and dosimetry, in research to link the basic physics and chemistry of biological molecules irradiated in aqueous solution, and the physicochemical characterization of chemical pollutants
For application of chemical and engineering principles to the development of nuclear fuel processing; separation science and technology; and innovative biomedical and bioprocessing concepts for environmental protection, energy production and conservation, and resource recovery