For pioneering the application of chaos theory and nonlinear dynamics to energy technologies, including gas-fluidized beds, internal combustion engines, and pulsed combustion.
For pioneering research and distinguished contributions to the field of high-temperature superconductors, including fundamental materials science advances and technical innovations that enable commercialization.
For leadership and pioneering research in the fundamental effects of radiation on a broad range of metals and ceramics applicable to fission and fusion energy systems.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.
For contributions to nuclear data measurement, analysis, and applications, through determination and development of neutron-induced reaction cross sections, high-resolution neutron scattering, the nonlocal nuclear optical model, and uncertainty and covariance information