For outstanding scientific leadership in nuclear physics and foundational work in developing and applying nuclear density functional theory to atomic nuclei
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
For original studies of the genetic effects of radiation in mammals. A world authority on mammalian mutagenesis, he and co-workers provided the experimental basis for estimating the genetic hazards of radiation to man and for the corresponding recommendations of national and international standards bodies