For outstanding scientific leadership in nuclear physics and foundational work in developing and applying nuclear density functional theory to atomic nuclei
For outstanding scientific, programmatic, and institutional contributions to ORNL in advanced computational structural mechanics and nuclear safety technologies.
For pioneering the application of chaos theory and nonlinear dynamics to energy technologies, including gas-fluidized beds, internal combustion engines, and pulsed combustion.
For pioneering research and distinguished contributions to the field of high-temperature superconductors, including fundamental materials science advances and technical innovations that enable commercialization.
For significant and fundamental achievements in laser-based chemical measurement techniques, such as single molecule detection in liquids, and pioneering the efforts in the development of microfabricated chemical instrumentation, including the laboratory on a chip concept.
Greenbaum, the winner of the 1995 DOE Biological and Chemical Technologies Research Award, has done extensive experimental work in photosynthesis, the process by which green plants grow, and its application to renewable energy production.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.