For his pioneering research in atom probe field-ion microscopy and atom probe tomography, most recently to understand the unprecedented properties and behaviors of nanostructured ferritic steels.
For innovative research in nuclear structure physics, particularly in areas leading to a quantitative understanding of the excitation and decay of the elementary collective modes of nuclei, and for vision and scientific and technical leadership in building the Holifield Radioactive Ion Beam Facility into a forefront laboratory for nuclear science.
For leadership and pioneering research in the fundamental effects of radiation on a broad range of metals and ceramics applicable to fission and fusion energy systems.
For pioneering research in disturbance and landscape ecology and in modeling of land-use change with its implications for global changes, which have influenced environmental decision making on a worldwide scale.
For forefront studies of the fundamental science of actinide elements, through mendelevium, which employ novel experimental techniques, make systematic comparisons, and emphasize the role of the elements' electronic configurations.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.