For outstanding scientific leadership in nuclear physics and foundational work in developing and applying nuclear density functional theory to atomic nuclei
For outstanding scientific, programmatic, and institutional contributions to ORNL in advanced computational structural mechanics and nuclear safety technologies.
For pioneering the application of chaos theory and nonlinear dynamics to energy technologies, including gas-fluidized beds, internal combustion engines, and pulsed combustion.
For pioneering research and distinguished contributions to the field of high-temperature superconductors, including fundamental materials science advances and technical innovations that enable commercialization.
For pioneering research in disturbance and landscape ecology and in modeling of land-use change with its implications for global changes, which have influenced environmental decision making on a worldwide scale.
For forefront studies of the fundamental science of actinide elements, through mendelevium, which employ novel experimental techniques, make systematic comparisons, and emphasize the role of the elements' electronic configurations.
For significant advancement of welding science and technology through original and definitive research, particularly for contributions to understanding the solidification behavior of the weld pool, phase stability microstructure-property correlations in welds, and continued leadership and outstanding service to the national and international welding research community.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.
For advances in neutron and gamma-ray dosimetry, the transport of electricity through gases, and the development of laser-based one-atom detection with applications in nuclear physics, solar neutrino research, and oceanic, geologic, and environmental research