For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.
For significant advancement of welding science and technology through original and definitive research, particularly for contributions to understanding the solidification behavior of the weld pool, phase stability microstructure-property correlations in welds, and continued leadership and outstanding service to the national and international welding research community.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.
For contributions to the development of new concepts and advanced systems for power generation and conversion, through innovative designs of nuclear reactors for aircraft propulsion and space auxiliary power and concepts for thermonuclear fusion reactor power plants
For research extending the theoretical description of direct nuclear reactions and nuclear structure, as one of the first theorists to implement the much more refined and detailed treatment of experimental data made possible by computers