For pioneering research in disturbance and landscape ecology and in modeling of land-use change with its implications for global changes, which have influenced environmental decision making on a worldwide scale.
For forefront studies of the fundamental science of actinide elements, through mendelevium, which employ novel experimental techniques, make systematic comparisons, and emphasize the role of the elements' electronic configurations.
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.
For contributions to understanding plasma turbulence and the nonlinear properties of magnetohydrodynamic instabilities, especially their role in explaining the behavior of magnetically confined plasmas, and for development of new magnetic confinement concepts that overcome these limitations.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.