Jerry is recognized for distinguished research on the genetic basis of tree growth and development, including leading the international efforts to sequence, assemble, and annotate the genomes of poplar and eucalyptus bioenergy feedstocks.
For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For internationally recognized contributions in distributed and cluster computing, including the development of the Parallel Virtual Machine and the Message Passing Interface standard now widely used in science to solve computational problems in biology, physics, chemistry, and materials science.
For experimental studies in atomic and molecular physics, particularly developments in the field of nonlinear laser spectroscopy and the physics of negative ions
Mook has conducted neutron scattering research on a broad spectrum of materials. He is best known for his pioneering research on the magnetic excitations of transition metal ferromagnets and the observation of itinerant electron effects in these materials.
For his internationally recognized work in the theory of alloys and his pioneering applications of massively parallel computing to first-principles calculations of the properties of materials.