Jerry is recognized for distinguished research on the genetic basis of tree growth and development, including leading the international efforts to sequence, assemble, and annotate the genomes of poplar and eucalyptus bioenergy feedstocks.
For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For innovative and fundamental contributions to the understanding of the interactions and transport of electrons in gases and liquids, negative ion processes, the interfacing of the gaseous and condensed phases of matter, and the use of fundamental knowledge in the development of gaseous dielectrics, radiation detectors, and pulsed power
For fundamental studies in radiation physics, radiation dosimetry, and surface physics and for pioneering theoretical work on collective electron modes, surface electromagnetic waves in solids, and elucidation of the interaction of charged particles with matter.