For his leadership in separations science and technology; for improving nuclear fuel recycling and waste removal; and for leading the development process that was instrumental in the cleanup of waste at the Savannah River Site.
For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For leadership in the development of high-temperature materials for energy and space applications, based on innovative use of physical metallurgy principles and basic physics knowledge to understand crystal structures and the mechanical properties of structural materials.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For application of chemical and engineering principles to the development of nuclear fuel processing; separation science and technology; and innovative biomedical and bioprocessing concepts for environmental protection, energy production and conservation, and resource recovery