For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For outstanding scientific, programmatic, and institutional contributions to ORNL in advanced computational structural mechanics and nuclear safety technologies.
For innovative research in nuclear structure physics, particularly in areas leading to a quantitative understanding of the excitation and decay of the elementary collective modes of nuclei, and for vision and scientific and technical leadership in building the Holifield Radioactive Ion Beam Facility into a forefront laboratory for nuclear science.
For significant and fundamental achievements in laser-based chemical measurement techniques, such as single molecule detection in liquids, and pioneering the efforts in the development of microfabricated chemical instrumentation, including the laboratory on a chip concept.
Greenbaum, the winner of the 1995 DOE Biological and Chemical Technologies Research Award, has done extensive experimental work in photosynthesis, the process by which green plants grow, and its application to renewable energy production.
For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For fundamental contributions to many areas of theoretical solid-state physics that directly relate to experimental programs, including the electronic structure and magnetism of transition and rare-earth metals, metal-electrolyte interfaces, superconductivity, and physical properties of heavy fermion, mixed valent, and fractal materials