For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For pioneering the application of chaos theory and nonlinear dynamics to energy technologies, including gas-fluidized beds, internal combustion engines, and pulsed combustion.
For pioneering research and distinguished contributions to the field of high-temperature superconductors, including fundamental materials science advances and technical innovations that enable commercialization.
For leadership and pioneering research in the fundamental effects of radiation on a broad range of metals and ceramics applicable to fission and fusion energy systems.
For his internationally recognized accomplishments in high-energy physics, radiation transport, and detector and neutron target research and development.
For distinguished research on the air/surface exchange of atmospheric trace gases and particles and their interactions with the Earth's biogeochemical cycles, and for pioneering developments in atmospheric sampling methodologies with special emphasis on the global mercury cycle.
For pioneering accomplishments in the fields of global optimization, artificial neural networks, and high performance computing based on quantum devices.
For distinguished contributions to energy policy research and analysis for transportation, and for advancing understanding of the transportation sector's role in energy and environmental concerns.
For fundamental research establishing fission-imposed limits on rotating nuclei, and for extensive studies of heavy ion reactions from low to ultrarelativistic energies.