Jerry is recognized for distinguished research on the genetic basis of tree growth and development, including leading the international efforts to sequence, assemble, and annotate the genomes of poplar and eucalyptus bioenergy feedstocks.
Since 2001, Mike Simpson has been a group leader for the Nanofabrication Research Laboratory and theme leader in the Center for Nanophase Materials Sciences. His research focus includes noise biology, nano-enabled synthetic biology and controlled synthesis and directed assembly of carbon nanostructures.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For pioneering research in disturbance and landscape ecology and in modeling of land-use change with its implications for global changes, which have influenced environmental decision making on a worldwide scale.
For internationally recognized contributions in distributed and cluster computing, including the development of the Parallel Virtual Machine and the Message Passing Interface standard now widely used in science to solve computational problems in biology, physics, chemistry, and materials science.
For his internationally recognized accomplishments in high-energy physics, radiation transport, and detector and neutron target research and development.
For innovative and fundamental contributions to the understanding of the interactions and transport of electrons in gases and liquids, negative ion processes, the interfacing of the gaseous and condensed phases of matter, and the use of fundamental knowledge in the development of gaseous dielectrics, radiation detectors, and pulsed power
For fundamental studies in radiation physics, radiation dosimetry, and surface physics and for pioneering theoretical work on collective electron modes, surface electromagnetic waves in solids, and elucidation of the interaction of charged particles with matter.
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.