For outstanding scientific leadership in nuclear physics and foundational work in developing and applying nuclear density functional theory to atomic nuclei
For outstanding scientific impact in computational soft matter and nanoscience through cross-discipline collaboration to address materials problems and discover new functional materials
For his role in conceiving, designing, and implementing novel geocomputational methods to help solve a wide variety of national and global problems in energy, the environment, and national security.
For pioneering studies of the functionality of mesoporous oxides and carbons for real-world applications, ionic liquids for chemical separation and materials synthesis, and catalysis by nanomaterials.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.