Skip to main content
ORNL’s Kate Evans has been awarded the 2024 Society for Industrial and Applied Mathematicians Activity Group on Mathematics of Planet Earth Prize.

Kate Evans, director for the Computational Sciences and Engineering Division at ORNL, has been awarded the 2024 Society for Industrial and Applied Mathematicians Activity Group on Mathematics of Planet Earth Prize. 

This CyberShake Study 22.12 seismic hazard model shows the Southern California regions (in reds and yellows) expected to experience strong ground motions at least once in the next 2,500 years. Image Credit: Statewide California Earthquake Center (SCEC).

Researchers at the Statewide California Earthquake Center are unraveling the mysteries of earthquakes by using physics-based computational models running on high-performance computing systems at ORNL. The team’s findings will provide a better understanding of seismic hazards in the Golden State. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

QSC Director Travis Humble, who gave a lunchtime talk on transitioning good ideas to device development, learns about one of the many quantum research efforts featured at the poster session. Credit: Alonda Hines/ORNL, U.S. Dept. of Energy

On Nov. 1, about 250 employees at Oak Ridge National Laboratory gathered in person and online for Quantum on the Quad, an event designed to collect input for a quantum roadmap currently in development. This document will guide the laboratory's efforts in quantum science and technology, including strategies for expanding its expertise to all facets of the field.

Frontier’s exascale power enables the Simple Cloud-Resolving E3SM Atmosphere Model to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Ben Hillman/Sandia National Laboratories, U.S. Dept. of Energy

A 19-member team of scientists from across the national laboratory complex won the Association for Computing Machinery’s 2023 Gordon Bell Special Prize for Climate Modeling for developing a model that uses the world’s first exascale supercomputer to simulate decades’ worth of cloud formations.

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

Front row: Victoria DiStefano and Dr. Asmeret Asefaw Berhe of DOE toured the SPRUCE experiment with Natalie Griffiths, Melanie Mayes, and Verity Salmon; back row: Dave Weston, Stephen Sebestyen (US Forest Service), Jonathan Stelling, Mark Guilliams, John Latimer (ORNL contractor), Kyle Pearson and Paul Hanson. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The first climate scientist to head the Department of Energy’s Office of Science, Dr. Asmeret Asefaw Berhe, recently visited two ORNL-led field research facilities in Minnesota and Alaska to witness how these critically important projects are informing our understanding of the future climate and its impact on communities.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

An illustration of the lattice examined by Phil Anderson in the early ‘70s. Shown as green ellipses, pairs of quantum particles fluctuated among multiple combinations to produce a spin liquid state.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

Frontier’s exascale power enables the Energy, Exascale and Earth System Model-Multiscale Modeling Framework — or E3SM-MMF — project to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Mark Taylor/Sandia National Laboratories, U.S. Dept. of Energy

The world’s first exascale supercomputer will help scientists peer into the future of global climate change and open a window into weather patterns that could affect the world a generation from now.