Skip to main content
This graphic shows an unconventional approach to making widely used composite materials stronger and tougher. Thermoplastic fibers are deposited like cobwebs on top of rigid fibers to chemically form a supportive network with a surrounding matrix, or binder substance. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Scientists at ORNL have developed a method that demonstrates how fiber-reinforced polymer composite materials used in the automotive, aerospace and renewable energy industries can be made stronger and tougher to better withstand mechanical or structural stresses over time.

Rigoberto Advincula has been elected to the to the AIMBE College of Fellows. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Rigoberto “Gobet” Advincula, a scientist with joint appointments at ORNL and the University of Tennessee, has been named a Fellow of the American Institute for Medical and Biological Engineering.

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

Forrest Hoffman

Forrest Hoffman, a distinguished scientist at the Department of Energy’s Oak Ridge National Laboratory, has been named a senior member of the Institute of Electrical and Electronics Engineers, the world’s largest organization for technical professionals.

DOE national laboratory scientists led by Oak Ridge National Laboratory have developed the first tree dataset of its kind, bridging molecular information about the poplar tree microbiome to ecosystem-level processes. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

A first-ever dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released by a team of DOE scientists led by ORNL. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

Alyssa Carrell is an ORNL ecologist studying how plant-microbe relationships can build resilience in natural ecosystems vulnerable to climate change. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Alyssa Carrell started her science career studying the tallest inhabitants in the forest, but today is focused on some of its smallest — the microbial organisms that play an outsized role in plant health. 

Assaf Anyamba Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL’s Assaf Anyamba has spent his career using satellite images to determine where extreme weather may lead to vector-borne disease outbreaks. His work has helped the U.S. government better prepare for outbreaks that happen during periods of extended weather events such as El Niño and La Niña, climate patterns in the Pacific Ocean that can affect weather worldwide. 

The 2023 Billion-Ton Report identifies feedstocks that could be available to produce biofuels to decarbonize the transportation and industrial sectors while potentially tripling the U.S. bioeconomy. The map indicates a mature market scenario, including emerging resources. Credit: ORNL/U.S. Dept. of Energy

The United States could triple its current bioeconomy by producing more than 1 billion tons per year of plant-based biomass for renewable fuels, while meeting projected demands for food, feed, fiber, conventional forest products and exports, according to the DOE’s latest Billion-Ton Report led by ORNL.

Chuck Greenfield, former assistant director of the DII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead.

Chuck Greenfield, former assistant director of the DIII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead.