Skip to main content
Steven Campbell and Radha Krishna-Moorthy discuss part of the power electronics that make up the Smart Universal Power Electronics Regulator technology developed at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL are helping modernize power management and enhance reliability in an increasingly complex electric grid.

NASA scientist Andrew Needham used the MARS neutron imaging instrument at Oak Ridge National Laboratory to study moon rock samples brought back from the Apollo missions. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

How did we get from stardust to where we are today? That’s the question NASA scientist Andrew Needham has pondered his entire career.

Mickey Wade

Mickey Wade has been named associate laboratory director for the Fusion and Fission Energy and Science Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

ORNL chemist and YO-STEM founder Candice Halbert focuses her professional time operating the Liquids Reflectometer at ORNL’s Spallation Neutron Source. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A chemist from Oak Ridge National Laboratory attracted national attention when her advocacy for science education made People magazine’s annual “Women Changing the World” issue.

This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.

Through the Honnold Foundation and Casa Pueblo, solar panels are installed in Adjuntas, Puerto Rico, and hooked to microgrids with battery storage. ORNL researchers are developing a microgrid orchestrator to manage the microgrids together for increased long-term electrical reliability. Credit: Fabio Andrade

ORNL researchers Ben Ollis and Max Ferrari will be in Adjuntas to join the March 18 festivities but also to hammer out more technical details of their contribution to the project: making the microgrids even more reliable.

From left are UWindsor students Isabelle Dib, Dominik Dziura, Stuart Castillo and Maksymilian Dziura at ORNL’s Neutron Spin Echo spectrometer. Their work advances studies on a natural cancer treatment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A scientific instrument at ORNL could help create a noninvasive cancer treatment derived from a common tropical plant.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

ORNL’s award-winning ultraclean condensing high-efficiency natural gas furnace features an affordable add-on technology that can remove more than 99.9% of acidic gases and other emissions. The technology can also be added to other natural gas-driven equipment. Credit: Jill Hemman/ORNL

Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides