Skip to main content
ORNL quantum researchers, from left, Brian Williams, Phil Evans, and Nick Peters work on their quantum key distribution system.

ORNL scientists have spent the past 20 years studying quantum photonic entanglement. Their partnership with colleagues at Los Alamos National Laboratory and private industry partner Qubitekk led to development of the nation’s first industry-led commercial quantum network. This type of network could ultimately help secure the nation’s power grid and other infrastructure from cyberattacks.

ORNL researchers are developing algorithms and multilayered communication and control systems that make electric vehicle chargers operate more reliably, even if there is a voltage drop or disturbance in the electric grid. Credit: Andy Sproles/ORNL, US Dept. of Energy

ORNL researchers are working to make EV charging more resilient by developing algorithms to deal with both internal and external triggers of charger failure. This will help charging stations remain available to traveling EV drivers, reducing range anxiety.

ORNL postdoctoral research associate Alex Miloshevsky presents his novel research in quantum networks at the 2024 OFC conference.

ORNL was front and center recently at one of the world’s largest optical networking conferences, the 2024 Optic Fiber Communication Conference and Exhibition, or OFC. ORNL researchers had major roles at the OFC 2024, a three-day event held in San Diego, California from March 26-28 which featured thousands of the world’s leading optical communications and networking professionals. 

ORNL researcher Brian Williams prepares for a demonstration of a quantum key distribution system. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An experiment by researchers at the Department of Energy’s Oak Ridge National Laboratory demonstrated advanced quantum-based cybersecurity can be realized in a deployed fiber link. 

Scientists discover super sensor for the smallest scales

A team that included researchers at ORNL used a new twist on an old method to detect materials at some of the smallest amounts yet recorded. The results could lead to enhancements in security technology and aid the development of quantum sensors. 

ORNL

Two different teams that included Oak Ridge National Laboratory employees were honored Feb. 20 with Secretary’s Honor Achievement Awards from the Department of Energy. This is DOE's highest form of employee recognition. 

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Prasad Kandula builds a medium-voltage solid state circuit breaker as part of ORNL’s project to develop medium-voltage power electronics in GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL are looking for a happy medium to enable the grid of the future, filling a gap between high and low voltages for power electronics technology that underpins the modern U.S. electric grid.

Applications for the U.S. Quantum Information Science Summer School are open until March 15, 2024. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

From July 15 to 26, 2024, the Department of Energy’s Oak Ridge National Laboratory will host the second U.S. Quantum Information Science, or QIS, Summer School.