Skip to main content
Miaofang Chi, a scientist in the Center for Nanophase Materials Sciences, received the 2021 Director’s Award for Outstanding Individual Accomplishment in Science and Technology. Credit: ORNL, U.S. Dept. of Energy

A world-leading researcher in solid electrolytes and sophisticated electron microscopy methods received Oak Ridge National Laboratory’s top science honor today for her work in developing new materials for batteries. The announcement was made during a livestreamed Director’s Awards event hosted by ORNL Director Thomas Zacharia.

Merlin Theodore, advanced fibers manufacturing group leader and Tuskegee University alumna, will guide Oak Ridge National Laboratory’s collaboration with the university, through which students and researchers work together to advance the development of bioderived materials. Credit: ORNL, U.S. Dept. of Energy

ORNL and Tuskegee University have formed a partnership to develop new biodegradable materials for use in buildings, transportation and biomedical applications.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

ORNL scientist Adrian Sabau describes components of a laser-interference structuring system that was used to treat aluminum alloy sheets for corrosion protection. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A multidisciplinary team of scientists at ORNL has applied a laser-interference structuring, or LIS, technique that makes significant strides toward eliminating the need for hazardous chemicals in corrosion protection for vehicles.

From top to bottom respectively, alloys were made without nanoprecipitates or with coarse or fine nanoprecipitates to assess effects of their sizes and spacings on mechanical behavior. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Tennessee, Knoxville, have found a way to simultaneously increase the strength and ductility of an alloy by introducing tiny precipitates into its matrix and tuning their size and spacing.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

A 3D printed turbine blade demonstrates the use of the new class of nickel-based superalloys that can withstand extreme heat environments without cracking or losing strength. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have demonstrated that a new class of superalloys made of cobalt and nickel remains crack-free and defect-resistant in extreme heat, making them conducive for use in metal-based 3D printing applications.

The Perseverance rover

On Feb. 18, the world will be watching as NASA’s Perseverance rover makes its final descent into Jezero Crater on the surface of Mars. Mars 2020 is the first NASA mission that uses plutonium-238 produced at the Department of Energy’s Oak Ridge National Laboratory.

Merlin Theodore holding N95 mask filtration material produced at DOE's Carbon Fiber Technology Facility

Three technologies developed by ORNL researchers have won National Technology Transfer Awards from the Federal Laboratory Consortium. One of the awards went to a team that adapted melt-blowing capabilities at DOE’s Carbon Fiber Technology Facility to enable the production of filter material for N95 masks in the fight against COVID-19.