Skip to main content
ORNL seismic researcher Chengping Chai placed seismic sensors on the ground at various distances from an ORNL nuclear reactor to learn whether they could detect its operating state. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Like most scientists, Chengping Chai is not content with the surface of things: He wants to probe beyond to learn what’s really going on. But in his case, he is literally building a map of the world beneath, using seismic and acoustic data that reveal when and where the earth moves.

ORNL’s award-winning ultraclean condensing high-efficiency natural gas furnace features an affordable add-on technology that can remove more than 99.9% of acidic gases and other emissions. The technology can also be added to other natural gas-driven equipment. Credit: Jill Hemman/ORNL

Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

An organic solvent and water separate and form nanoclusters on the hydrophobic and hydrophilic sections of plant material, driving the efficient deconstruction of biomass. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists at ORNL used neutron scattering and supercomputing to better understand how an organic solvent and water work together to break down plant biomass, creating a pathway to significantly improve the production of renewable

From left, Peter Jiang, Elijah Martin and Benjamin Sulman have been selected for Early Career Research Program awards from the Department of Energy's Office of Science. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

The Department of Energy’s Office of Science has selected three Oak Ridge National Laboratory scientists for Early Career Research Program awards.

Nuclear — Seeing inside particles

Oak Ridge National Laboratory researchers working on neutron imaging capabilities for nuclear materials have developed a process for seeing the inside of uranium particles – without cutting them open.

Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, Oak Ridge National Laboratory/U.S. Dept. of Energy

Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, Oak Ridge National Laboratory/U.S. Dept. of Energy

Illustration of a nitrogen dioxide molecule (depicted in blue and purple) captured in a nano-size pore of an MFM-520 metal-organic framework material as observed using neutron vibrational spectroscopy at Oak Ridge National Laboratory. Image credit: ORNL/Jill Hemman

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material