Skip to main content
A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

This map illustrates the natural climate variability that affects the cold-season climate of the Central Southwest Asian region. Credit: Moetasim Ashfaq/ORNL

As extreme weather devastates communities worldwide, scientists are using modeling and simulation to understand how climate change impacts the frequency and intensity of these events. Although long-term climate projections and models are important, they are less helpful for short-term prediction of extreme weather that may rapidly displace thousands of people or require emergency aid.

Reuben Budiardja, an Oak Ridge National Laboratory computational scientist, worked with the early users who helped prepare Frontier, the world’s first exascale supercomputer, for scientific operations. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

With the world’s first exascale supercomputer now fully open for scientific business, researchers can thank the early users who helped get the machine up to speed.

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

CFM’s RISE open fan engine architecture. Image: GE Aerospace

To support the development of a revolutionary new open fan engine architecture for the future of flight, GE Aerospace has run simulations using the world’s fastest supercomputer capable of crunching data in excess of exascale speed, or more than a quintillion calculations per second.

Simulations performed on Oak Ridge National Laboratory’s Summit supercomputer generated one of the most detailed portraits to date of how turbulence disperses heat through ocean water under realistic conditions. Credit: Miles Couchman

Simulations performed on the Summit supercomputer at ORNL revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.

Frontier supercomputer

Innovations in artificial intelligence are rapidly shaping our world, from virtual assistants and chatbots to self-driving cars and automated manufacturing.

: The summer school brought students and scientists of all career stages together to share research results and secrets to success in the field of quantum information science. Credit: Yuheng Chen/Purdue University

For the third year in a row, the Quantum Science Center held its signature workforce development event: a comprehensive summer school for students and early-career scientists designed to facilitate conversations and hands-on activities related to

Ashley Barker. Credit: Carlos Jones/ORNL

At the National Center for Computational Sciences, Ashley Barker enjoys one of the least complicated–sounding job titles at ORNL: section head of operations. But within that seemingly ordinary designation lurks a multitude of demanding roles as she oversees the complete user experience for NCCS computer systems.