Skip to main content
New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Chlorella Vulgaris

In the search for ways to fight methylmercury in global waterways, scientists at Oak Ridge National Laboratory discovered that some forms of phytoplankton are good at degrading the potent neurotoxin.

ORNL scientists mutated amino acids in a receptor protein, shown in green, which diminished interaction with the SARS-CoV-2 virus spike protein, shown in red. Mutating the receptor protein hampered the virus’s ability to infect host cells. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists exploring bioenergy plant genetics have made a surprising discovery: a protein domain that could lead to new COVID-19 treatments.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.

When an electron beam drills holes in heated graphene, single-atom vacancies, shown in purple, diffuse until they join with other vacancies to form stationary structures and chains, shown in blue. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers serendipitously discovered when they automated the beam of an electron microscope to precisely drill holes in the atomically thin lattice of graphene, the drilled holes closed up.

ORNL researchers led by Michael Garvin, left, and David Kainer discovered genetic mutations called structural variants and linked them to autism spectrum disorders, demonstrating an approach that could be used to develop better diagnostics and drug therapies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers discovered genetic mutations that underlie autism using a new approach that could lead to better diagnostics and drug therapies.

Researchers at Oak Ridge National Laboratory probed the chemistry of radium to gain key insights on advancing cancer treatments using radiation therapy. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.