Skip to main content
Carinata, pictured in full bloom at a producer’s field in Georgia, is a winter cover crop of interest as a feedstock for sustainable aviation fuel. Credit: Southeast Partnership for Advanced Renewables from Carinata

Oak Ridge National Laboratory scientists led the development of a supply chain model revealing the optimal places to site farms, biorefineries, pipelines and other infrastructure for sustainable aviation fuel production.

This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

One of the proteins identified through a new ORNL-developed approach could be key to communications between poplar trees and beneficial microbes that can help boost poplar trees’ growth, carbon storage and climate resilience. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have identified specific proteins and amino acids that could control bioenergy plants’ ability to identify beneficial microbes that can enhance plant growth and storage of carbon in soils.

ORNL’s Adam Guss began adapting the SAGE gene editing tool to modify microbes in graduate school. Today, SAGE is rapidly accelerating the design of custom microbes for a variety of applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A DNA editing tool adapted by Oak Ridge National Laboratory scientists makes engineering microbes for everything from bioenergy production to plastics recycling easier and faster.

Technology to retrofit nonpowered dams such as the Lake Sequoyah Dam in North Carolina could be tested before deploying to ensure performance and reliability. Credit: Scott DeNeale/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have identified a key need for future hydropower innovations – full-scale testing – to better inform developers and operators before making major investments.

ORNL’s Brenda Pracheil, left, and Kristine Moody collect water samples at Melton Hill Lake using a sophisticated instrument that collects DNA in the water to determine fish species and number of fish in the water, which could prove useful for monitoring hydropower impacts. Credit: Carlos Jones, ORNL/U.S Dept. of Energy

Researchers at Oak Ridge National Laboratory are using a novel approach in determining environmental impacts to aquatic species near hydropower facilities, potentially leading to smarter facility designs that can support electrical grid reliability.

Planting native grasses such as the bioenergy crop switchgrass can restore habitat for birds like this Eastern kingbird. Credit: Chris Lituma/West Virginia University

An analysis by Oak Ridge National Laboratory shows that using less-profitable farmland to grow bioenergy crops such as switchgrass could fuel not only clean energy, but also gains in biodiversity.

In a study, ORNL researchers concluded that the most direct path to plastic upcycling is through designing polymers specifically for reuse, which would allow the material to be converted into high-value products. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers determined that designing polymers specifically with upcycling in mind could reduce future plastic waste considerably and facilitate a circular economy where the material is used repeatedly.

The ectomycorrhizal fungus Laccaria bicolor, shown in green, envelops the roots of a transgenic switchgrass plant. Switchgrass is not known to interact with this type of fungi naturally; the added PtLecRLK1 gene tells the plant to engage the fungus. Credit: ORNL, U.S. Dept. of Energy

An ORNL team has successfully introduced a poplar gene into switchgrass, an important biofuel source, that allows switchgrass to interact with a beneficial fungus, ultimately boosting the grass’ growth and viability in changing environments.

Fungi use signaling molecules called LCOs to communicate with each other and to regulate growth. Credit: Jessy Labbe/Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory and collaborators have discovered that signaling molecules known to trigger symbiosis between plants and soil bacteria are also used by almost all fungi as chemical signals to communicate with each other.