Skip to main content
The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

From left, Cable-Dunlap, Chi, Smith and Thornton have been named ORNL Corporate Fellows. Credit: ORNL, U.S. Dept. of Energy

Four researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

2023 Battelle Distinguished Inventors

Four scientists affiliated with ORNL were named Battelle Distinguished Inventors during the lab’s annual Innovation Awards on Dec. 1 in recognition of being granted 14 or more United States patents.

Conceptual art depicts machine learning finding an ideal material for capacitive energy storage. Its carbon framework (black) has functional groups with oxygen (pink) and nitrogen (turquoise). Credit: Tao Wang/ORNL, U.S. Dept. of Energy

Guided by machine learning, chemists at ORNL designed a record-setting carbonaceous supercapacitor material that stores four times more energy than the best commercial material.

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

Frontier supercomputer

Innovations in artificial intelligence are rapidly shaping our world, from virtual assistants and chatbots to self-driving cars and automated manufacturing.

Matt Sieger. Credit: Carlos Jones/ORNL

The Oak Ridge Leadership Computing Facility’s Matt Sieger has been named the project director for the OLCF-6 effort. This next OLCF undertaking will plan and build a world-class successor to the OLCF’s still-new exascale system, Frontier.

The Frontier supercomputer at ORNL remains in the number one spot on the May 2023 TOP500 rankings, with an updated high-performance Linpack score of 1.194 exaflops. Engineers at the Oak Ridge Leadership Computing Facility, which houses Frontier and its predecessor Summit, expect that Frontier’s speeds could ultimately top 1.4 exaflops, or 1.4 quintillion calculations per second. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

With the world’s first exascale supercomputing system now open to full user operations, research teams are harnessing Frontier’s power and speed to tackle some of the most challenging problems in modern science.

Michael Parks

ORNL has named Michael Parks director of the Computer Science and Mathematics Division within ORNL’s Computing and Computational Sciences Directorate. His hiring became effective March 13.

UKAEA will provide novel fusion materials to be irradiated in ORNL’s HFIR facility over the next four years. From left, Kathy McCarthy, Jeremy Busby, Mickey Wade, Prof Sir Ian Chapman (UKAEA CEO), Cynthia Jenks and Yutai Kato will represent this new partnership. Not pictured: Dr. Amanda Quadling, UKAEA’s Director of Materials Research Facility. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL has entered a strategic research partnership with the United Kingdom Atomic Energy Authority, or UKAEA, to investigate how different types of materials behave under the influence of high-energy neutron sources. The $4 million project is part of UKAEA's roadmap program, which aims to produce electricity from fusion.