Skip to main content
The 2023 Billion-Ton Report identifies feedstocks that could be available to produce biofuels to decarbonize the transportation and industrial sectors while potentially tripling the U.S. bioeconomy. The map indicates a mature market scenario, including emerging resources. Credit: ORNL/U.S. Dept. of Energy

The United States could triple its current bioeconomy by producing more than 1 billion tons per year of plant-based biomass for renewable fuels, while meeting projected demands for food, feed, fiber, conventional forest products and exports, according to the DOE’s latest Billion-Ton Report led by ORNL.

The operating phases of an eVTOL need varying amounts of power; some require the battery to discharge high amounts of current rapidly, reducing the distance the vehicle can travel before its battery must be recharged. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically. 

ORNL

Two different teams that included Oak Ridge National Laboratory employees were honored Feb. 20 with Secretary’s Honor Achievement Awards from the Department of Energy. This is DOE's highest form of employee recognition. 

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

In a proposed carbon-capture method, magnesium oxide crystals on the ground bind to carbon dioxide molecules from the surrounding air, triggering the formation of magnesium carbonate. The magnesium carbonate is then heated to convert it back to magnesium oxide and release the carbon dioxide for placement underground, or sequestration. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Magnesium oxide is a promising material for capturing carbon dioxide directly from the atmosphere and injecting it deep underground to limit the effects of climate change. ORNL scientists are exploring ways to overcome an obstacle to making the technology economical.

A collaboration between Oak Ridge National Laboratory and Caterpillar Inc. will investigate using methanol as an alternative fuel source for marine vessels. Members of the research team kicked off the project with the installation of a 6-cylinder engine at the Department of Energy’s National Transportation Research Center at ORNL.

ORNL and Caterpillar Inc. have entered into a cooperative research and development agreement, or CRADA, to investigate using methanol as an alternative fuel source for four-stroke internal combustion marine engines.

Mat Doucet, left, of Oak Ridge National Laboratory and Sarah Blair of the National Renewable Energy Lab used neutrons to understand an electrochemical way to produce ammonia

Scientists from Stanford University and the Department of Energy’s Oak Ridge National Laboratory are turning air into fertilizer without leaving a carbon footprint. Their discovery could deliver a much-needed solution to help meet worldwide carbon-neutral goals by 2050.

From left, Cable-Dunlap, Chi, Smith and Thornton have been named ORNL Corporate Fellows. Credit: ORNL, U.S. Dept. of Energy

Four researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

(Right to left) Carbon capture by aqueous glycine: the amino acid’s attack on carbon dioxide (reactant state) is strongly influenced by the water dynamics, leading to a slow transition to an intermediate state. In the next step, due to reduced nonequilibrium solvent effects, a proton is rapidly released leading to the product state. Credit: Santanu Roy/ORNL, U.S. Dept. of Energy

Recent research by ORNL scientists focused on the foundational steps of carbon dioxide sequestration using aqueous glycine, an amino acid known for its absorbent qualities.