Skip to main content
The OpeN-AM experimental platform, installed at the VULCAN instrument, features a robotic arm that prints layers of molten metal to create complex shapes. Credit: Jill Hemman/ORNL, U.S Dept. of Energy

Technologies developed by researchers at ORNL have received six 2023 R&D 100 Awards.  

Neutron experiments helped reveal the one-carbon enzymatic mechanism that synthesizes vital food sources for cancer cells that depend on vitamin B6, providing key insights into designing novel drugs to slow the spread of aggressive cancers. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

After a highly lauded research campaign that successfully redesigned a hepatitis C drug into one of the leading drug treatments for COVID-19, scientists at ORNL are now turning their drug design approach toward cancer. 

Innovation Crossroads cohort 7

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at ORNL. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

ORNL’s Fernanda Santos examines a soil sample at an NGEE Arctic field site in the Alaskan tundra in June 2022. Credit: Amy Breen, University of Alaska Fairbanks.

Wildfires are an ancient force shaping the environment, but they have grown in frequency, range and intensity in response to a changing climate. At ORNL, scientists are working on several fronts to better understand and predict these events and what they mean for the carbon cycle and biodiversity.

Upgrades to the particle accelerator enabling the record 1.7-megawatt beam power at the Spallation Neutron Source included adding 28 high-power radio-frequency klystrons (red tubes) to provide higher power for the accelerator. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory set a world record when its particle accelerator beam operating power reached 1.7 megawatts, substantially improving on the facility’s original design capability.

ORNL researchers, from left, Yang Liu, Xiaohan Yang and Torik Islam, collaborated on the development of a new capability to insert multiple genes simultaneously for fast, efficient transformation of plants into better bioenergy feedstocks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In a discovery aimed at accelerating the development of process-advantaged crops for jet biofuels, scientists at ORNL developed a capability to insert multiple genes into plants in a single step.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Colleen Iversen is the new director of NGEE Arctic, leading a large cross-disciplinary team of scientists in pursuit of a better understanding of Arctic climate processes. Credit: ORNL, U.S. Dept. of Energy

Colleen Iversen, ecosystem ecologist, group leader and distinguished staff scientist, has been named director of the Next-Generation Ecosystem Experiments Arctic, or NGEE Arctic, a multi-institutional project studying permafrost thaw and other climate-related processes in Alaska.

Mickey Wade

Mickey Wade has been named associate laboratory director for the Fusion and Fission Energy and Science Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

An illustration of the long-term evolution likely to occur as rising temperatures and subsequent thawing of frozen Arctic soils affects the northern Alaska tundra, as predicted by a high-performance model created by Oak Ridge National Laboratory. Credit: Adam Malin and Ethan Coon, ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory scientists set out to address one of the biggest uncertainties about how carbon-rich permafrost will respond to gradual sinking of the land surface as temperatures rise.