Skip to main content
Alyssa Carrell is an ORNL ecologist studying how plant-microbe relationships can build resilience in natural ecosystems vulnerable to climate change. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Alyssa Carrell started her science career studying the tallest inhabitants in the forest, but today is focused on some of its smallest — the microbial organisms that play an outsized role in plant health. 

Assaf Anyamba Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL’s Assaf Anyamba has spent his career using satellite images to determine where extreme weather may lead to vector-borne disease outbreaks. His work has helped the U.S. government better prepare for outbreaks that happen during periods of extended weather events such as El Niño and La Niña, climate patterns in the Pacific Ocean that can affect weather worldwide. 

The 2023 Billion-Ton Report identifies feedstocks that could be available to produce biofuels to decarbonize the transportation and industrial sectors while potentially tripling the U.S. bioeconomy. The map indicates a mature market scenario, including emerging resources. Credit: ORNL/U.S. Dept. of Energy

The United States could triple its current bioeconomy by producing more than 1 billion tons per year of plant-based biomass for renewable fuels, while meeting projected demands for food, feed, fiber, conventional forest products and exports, according to the DOE’s latest Billion-Ton Report led by ORNL.

ORNL researchers developed a long-sequenced AI transformer capable of processing millions of pathology reports to provide experts researching cancer diagnoses and management with more accurate information on cancer reporting.

In partnership with the National Cancer Institute, researchers from ORNL and Louisiana State University developed a long-sequenced AI transformer capable of processing millions of pathology reports to provide experts researching cancer diagnoses and management with exponentially more accurate information on cancer reporting.

Anuj Kapadia

Anuj J. Kapadia, who heads the Advanced Computing Methods for Health Sciences Section at ORNL, has been elected as president of the Southeastern Chapter of the American Association of Physicists in Medicine. 

ORNL

Two different teams that included Oak Ridge National Laboratory employees were honored Feb. 20 with Secretary’s Honor Achievement Awards from the Department of Energy. This is DOE's highest form of employee recognition. 

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. 

Using a better modeling framework, with data collected from Mississippi Delta marshes, scientists are able to improve the predictions of methane and other greenhouse gas emissions. Credit: Matthew Berens/ORNL, U.S Dept. of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are using a new modeling framework in conjunction with data collected from marshes in the Mississippi Delta to improve predictions of climate-warming methane and nitrous oxide