Skip to main content
An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

Luiz Leal portrait

ORNL’s Luiz Leal of the Department of Energy’s Oak Ridge National Laboratory is the recipient of the 2023 Seaborg Medal from the American Nuclear Society.

ORNL researcher Anne Campbell will present a paper in Korea next year on materials support of carbon-free nuclear energy. Credit: Adam Malin, U.S. Dept. of Energy

Anne Campbell, a researcher at ORNL, recently won the Young Leaders Professional Development Award from the Minerals, Metals & Materials Society, or TMS, and has been chosen as the first recipient of the Young Leaders International Scholar Program award from TMS and the Korean Institute of Metals and Materials, or KIM.

Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

ORNL researcher Sreenivasa Jaldanki was recently elevated to IEEE senior member. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Sreenivasa Jaldanki, a researcher in the Grid Systems Modeling and Controls group at the Department of Energy’s Oak Ridge National Laboratory, was recently elevated to senior membership in the Institute of Electrical and Electronics Engineers, or IEEE.

ORNL researcher Zhijia Du inserts a newly developed liquid electrolyte material into a battery pouch cell. The formulation extends the life of extreme-fast-charging batteries like those used in electric vehicles. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers are taking fast charging for electric vehicles, or EVs, to new extremes. A team of battery scientists recently developed a lithium-ion battery material that not only recharges 80% of its capacity in 10

Steven Hamilton, an R&D scientist in the HPC Methods for Nuclear Applications group at ORNL, leads the ExaSMR project. ExaSMR was developed to run on the Oak Ridge Leadership Computing Facility’s exascale-class supercomputer, Frontier. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Exascale Small Modular Reactor effort, or ExaSMR, is a software stack developed over seven years under the Department of Energy’s Exascale Computing Project to produce the highest-resolution simulations of nuclear reactor systems to date. Now, ExaSMR has been nominated for a 2023 Gordon Bell Prize by the Association for Computing Machinery and is one of six finalists for the annual award, which honors outstanding achievements in high-performance computing from a variety of scientific domains.  

Rose Montgomery

Rose Montgomery, a distinguished researcher and leader of the Used Fuel and Nuclear Material Disposition group at ORNL, has been selected to participate in the U.S. WIN Nuclear Executives of Tomorrow, or NEXT, class of 2023 to 2024.