Skip to main content
The OpeN-AM experimental platform, installed at the VULCAN instrument at ORNL’s Spallation Neutron Source, features a robotic arm that prints layers of molten metal to create complex shapes. This allows scientists to study 3D printed welds microscopically. Credit: Jill Hemman, ORNL/U.S. Dept. of Energy

Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.

ORNL’s David Sholl is director of the new DOE Energy Earthshot Non-Equilibrium Energy Transfer for Efficient Reactions center to help decarbonize the industrial chemical industry. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

ORNL has been selected to lead an Energy Earthshot Research Center, or EERC, focused on developing chemical processes that use sustainable methods instead of burning fossil fuels to radically reduce industrial greenhouse gas emissions to stem climate change and limit the crisis of a rapidly warming planet.
 

Construction is underway at ORNL's Spallation Neutron Source. Credit: The Spallation Neutron Source at Oak Ridge National Laboratory — already the world’s most powerful accelerator-based neutron source — will be on a planned hiatus through June 2024 as crews work to upgrade the facility. Credit: Brett Riffert/ORNL, U.S. Dept. of Energy

The Spallation Neutron Source — already the world’s most powerful accelerator-based neutron source — will be on a planned hiatus through June 2024 as crews work to upgrade the facility. Much of the work — part of the facility’s Proton Power Upgrade project — will involve building a connector between the accelerator and the planned Second Target Station.

Neutron experiments helped reveal the one-carbon enzymatic mechanism that synthesizes vital food sources for cancer cells that depend on vitamin B6, providing key insights into designing novel drugs to slow the spread of aggressive cancers. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

After a highly lauded research campaign that successfully redesigned a hepatitis C drug into one of the leading drug treatments for COVID-19, scientists at ORNL are now turning their drug design approach toward cancer. 

Yarom Polsky studio portrait

Yarom Polsky, director of the Manufacturing Science Division, or MSD, at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the American Society of Mechanical Engineers, or ASME.

Upgrades to the particle accelerator enabling the record 1.7-megawatt beam power at the Spallation Neutron Source included adding 28 high-power radio-frequency klystrons (red tubes) to provide higher power for the accelerator. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory set a world record when its particle accelerator beam operating power reached 1.7 megawatts, substantially improving on the facility’s original design capability.

ORNL’s Yun Liu stands before one of the 10 laser comb-based beam diagnostics stations at the Spallation Neutron Source. The laser comb solves the longstanding problem of measuring changes in the beam across time. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When opportunity meets talent, great things happen. The laser comb developed at ORNL serves as such an example.

Radu Custelcean's sustainable chemistry for capturing carbon dioxide from air has been licensed to Holocene. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An innovative and sustainable chemistry developed at ORNL for capturing carbon dioxide has been licensed to Holocene, a Knoxville-based startup focused on designing and building plants that remove carbon dioxide

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

A pure lipid membrane formed using lipid-coated water droplets exhibits long-term potentiation, or LTP, associated with learning and memory, emulating hippocampal LTP observed in the brains of mammals and birds. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at ORNL achieved a first-of-its-kind result that could have big implications for both edge computing and human health.