Skip to main content
A new method for analyzing climate models brings together information from various lines of evidence to represent Earth’s climate sensitivity. Credit: Jason Smith/ORNL, U.S. Dept. of Energy

Researchers from institutions including ORNL have created a new method for statistically analyzing climate models that projects future conditions with more fidelity.

The Frontier exascale supercomputer at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL has joined a global consortium of scientists from federal laboratories, research institutes, academia and industry to address the challenges of building large-scale artificial intelligence systems and advancing trustworthy and reliable AI for

Researchers used Frontier, the world’s first exascale supercomputer, to simulate a magnesium system of nearly 75,000 atoms and the National Energy Research Computing Center’s Perlmutter supercomputer to simulate a quasicrystal structure, above, in a ytterbium-cadmium alloy. Credit: Vikram Gavini

Researchers used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

ORNL scientists developed a method that improves the accuracy of the CRISPR Cas9 gene editing tool used to modify microbes for renewable fuels and chemicals production. This research draws on the lab’s expertise in quantum biology, artificial intelligence and synthetic biology. Credit: Philip Gray/ORNL, U.S. Dept. of Energy

Scientists at ORNL used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

The OpeN-AM experimental platform, installed at the VULCAN instrument at ORNL’s Spallation Neutron Source, features a robotic arm that prints layers of molten metal to create complex shapes. This allows scientists to study 3D printed welds microscopically. Credit: Jill Hemman, ORNL/U.S. Dept. of Energy

Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.

The image conceptualizes the processing, structure and mechanical behavior of glassy ion conductors for solid state lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of its Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making. Credit: Rachel Green/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of the Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making.

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

Frontier supercomputer

Innovations in artificial intelligence are rapidly shaping our world, from virtual assistants and chatbots to self-driving cars and automated manufacturing.

ORNL’s Debangshu Mukherjee was named an npj Computational Materials “Reviewer of the Year.”

ORNL’s Debangshu Mukherjee has been named an npj Computational Materials “Reviewer of the Year.”