Skip to main content
ORNL quantum researchers, from left, Brian Williams, Phil Evans, and Nick Peters work on their quantum key distribution system.

ORNL scientists have spent the past 20 years studying quantum photonic entanglement. Their partnership with colleagues at Los Alamos National Laboratory and private industry partner Qubitekk led to development of the nation’s first industry-led commercial quantum network. This type of network could ultimately help secure the nation’s power grid and other infrastructure from cyberattacks.

ORNL’s Suhas Sreehari explains the algebraic and topological foundations of representation systems, used in generative AI technology such as large language models. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

In the age of easy access to generative AI software, user can take steps to stay safe. Suhas Sreehari, an applied mathematician, identifies misconceptions of generative AI that could lead to unintentionally bad outcomes for a user. 
 

ORNL researcher Brian Williams prepares for a demonstration of a quantum key distribution system. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An experiment by researchers at the Department of Energy’s Oak Ridge National Laboratory demonstrated advanced quantum-based cybersecurity can be realized in a deployed fiber link. 

AI-driven attention mechanisms aid in streamlining cancer pathology reporting.

In partnership with the National Cancer Institute, researchers from the Department of Energy’s Oak Ridge National Laboratory’s Modeling Outcomes for Surveillance using Scalable Artificial Intelligence are building on their groundbreaking work to

Sean Oesch

While government regulations are slowly coming, a group of cybersecurity professionals are sharing best practices to protect large language models powering these tools. Sean Oesch, a leader in emerging cyber technologies, recently contributed to the OWASP AI Security and Privacy Guide to inform global AI security standards and regulations.

Scientists discover super sensor for the smallest scales

A team that included researchers at ORNL used a new twist on an old method to detect materials at some of the smallest amounts yet recorded. The results could lead to enhancements in security technology and aid the development of quantum sensors. 

A multidirectorate group from ORNL attended AGU23 and came away inspired for the year ahead in geospatial, earth and climate science

ORNL scientists and researchers attended the annual American Geophysical Union meeting and came away inspired for the year ahead in geospatial, earth and climate science. 

Prasad Kandula builds a medium-voltage solid state circuit breaker as part of ORNL’s project to develop medium-voltage power electronics in GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL are looking for a happy medium to enable the grid of the future, filling a gap between high and low voltages for power electronics technology that underpins the modern U.S. electric grid.

Conversion of an atomic structure into a graph, where atoms are treating as nodes and interatomic bonds as edges. Credit: Massimiliano “Max” Lupo Pasini/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge and Lawrence Berkeley National Laboratories are evolving graph neural networks to scale on the nation’s most powerful computational resources, a necessary step in tackling today’s data-centric

Applications for the U.S. Quantum Information Science Summer School are open until March 15, 2024. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

From July 15 to 26, 2024, the Department of Energy’s Oak Ridge National Laboratory will host the second U.S. Quantum Information Science, or QIS, Summer School.