Skip to main content
Shift Thermal co-founders Mitchell Ishamel, left, and Levon Atoyan stand in front of one of the company’s ice thermal energy storage modules, which will be submitted to independent measurement and validation testing in May. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Shift Thermal, a member of Innovation Crossroads’ first cohort of fellows, is commercializing advanced ice thermal energy storage for HVAC, shifting the cooling process to be more sustainable, cost-effective and resilient. Shift Thermal wants to enable a lower-cost, more-efficient thermal energy storage method to provide long-duration resilient cooling when the electric grid is down. 

ORNL quantum researchers, from left, Brian Williams, Phil Evans, and Nick Peters work on their quantum key distribution system.

ORNL scientists have spent the past 20 years studying quantum photonic entanglement. Their partnership with colleagues at Los Alamos National Laboratory and private industry partner Qubitekk led to development of the nation’s first industry-led commercial quantum network. This type of network could ultimately help secure the nation’s power grid and other infrastructure from cyberattacks.

ORNL’s Suhas Sreehari explains the algebraic and topological foundations of representation systems, used in generative AI technology such as large language models. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

In the age of easy access to generative AI software, user can take steps to stay safe. Suhas Sreehari, an applied mathematician, identifies misconceptions of generative AI that could lead to unintentionally bad outcomes for a user. 
 

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

Astrophysicists at the State University of New York, Stony Brook, and University of California, Berkeley created 3D simulations of X-ray bursts on the surfaces of neutron stars. Two views of these X-ray bursts are shown: the left column is viewed from above while the right column shows it from a shallow angle above the surface.

Astrophysicists at the State University of New York, Stony Brook and University of California, Berkeley, used the Oak Ridge Leadership Computing Facility’s Summit supercomputer to compare models of X-ray bursts in 2D and 3D. 

ORNL researcher Brian Williams prepares for a demonstration of a quantum key distribution system. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An experiment by researchers at the Department of Energy’s Oak Ridge National Laboratory demonstrated advanced quantum-based cybersecurity can be realized in a deployed fiber link. 

AI-driven attention mechanisms aid in streamlining cancer pathology reporting.

In partnership with the National Cancer Institute, researchers from the Department of Energy’s Oak Ridge National Laboratory’s Modeling Outcomes for Surveillance using Scalable Artificial Intelligence are building on their groundbreaking work to

Sean Oesch

While government regulations are slowly coming, a group of cybersecurity professionals are sharing best practices to protect large language models powering these tools. Sean Oesch, a leader in emerging cyber technologies, recently contributed to the OWASP AI Security and Privacy Guide to inform global AI security standards and regulations.

Scientists discover super sensor for the smallest scales

A team that included researchers at ORNL used a new twist on an old method to detect materials at some of the smallest amounts yet recorded. The results could lead to enhancements in security technology and aid the development of quantum sensors. 

Prasad Kandula builds a medium-voltage solid state circuit breaker as part of ORNL’s project to develop medium-voltage power electronics in GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL are looking for a happy medium to enable the grid of the future, filling a gap between high and low voltages for power electronics technology that underpins the modern U.S. electric grid.