Skip to main content
ORNL researchers win Best Paper award for nickel-based alloy tailoring

Rishi Pillai and his research team from ORNL will receive a Best Paper award from the American Society of Mechanical Engineers International Gas Turbine Institute in June at the Turbo Expo 2024 in London. 

ORNL researchers to present wireless charging technology in OTT’s Discovery Series webinar

ORNL’s Omer Onar and Mostak Mohammad will present on ORNL's wireless charging technology in DOE’s Office of Technology Transitions National Lab Discovery Series Tuesday, April 30. 

 

 

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

Shift Thermal co-founders Mitchell Ishamel, left, and Levon Atoyan stand in front of one of the company’s ice thermal energy storage modules, which will be submitted to independent measurement and validation testing in May. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Shift Thermal, a member of Innovation Crossroads’ first cohort of fellows, is commercializing advanced ice thermal energy storage for HVAC, shifting the cooling process to be more sustainable, cost-effective and resilient. Shift Thermal wants to enable a lower-cost, more-efficient thermal energy storage method to provide long-duration resilient cooling when the electric grid is down. 

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

Images showing distortion caused by residual stress in the horizontal and vertical axes of material. ORNL researchers found that simply adding material in critical regions mitigates the accumulation of stress. Credit: ORNL, U.S. Dept. of Energy

ORNL scientists have determined how to avoid costly and potentially irreparable damage to large metallic parts fabricated through additive manufacturing, also known as 3D printing, that is caused by residual stress in the material. 

Representatives from several local partners attended a ribbon-cutting for the new SkyNano facility in Louisville, Tennesse. Front row, from left to right are Deborah Crawford, vice chancellor for research at the University of Tennessee, Knoxville; Tom Rogers, president and chief executive officer of the UT Research Park; Lindsey Cox, CEO of LaunchTN; Cary Pint, SkyNano co-founder and chief technology officer; Susan Hubbard, ORNL deputy for science and technology; Anna Douglas, SkyNano co-founder and CEO; Ch

SkyNano, an Innovation Crossroads alumnus, held a ribbon-cutting for their new facility. SkyNano exemplifies using DOE resources to build a successful clean energy company, making valuable carbon nanotubes from waste CO2. 

Intern Noah Miller, left, and his mentor, Joe McVeigh, stand with their poster at the American Glovebox Society conference in 2023.

College intern Noah Miller is on his 3rd consecutive internship at ORNL, currently working on developing an automated pellet inspection system for Oak Ridge National Laboratory’s Plutonium-238 Supply Program. Along with his success at ORNL, Miller is also focusing on becoming a mentor for kids, giving back to the place where he discovered his passion and developed his skills. 

ORNL researchers achieved the highest wireless power transfer level for a light-duty passenger vehicle when the team demonstrated a 100-kW wireless power transfer to an EV using ORNL’s patented polyphase electromagnetic coupling coil. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A team of researchers at ORNL demonstrated that a light-duty passenger electric vehicle can be wirelessly charged at 100-kW with 96% efficiency using polyphase electromagnetic coupling coils with rotating magnetic fields.