Skip to main content
Drawing of air taxi

If air taxis become a viable mode of transportation, Oak Ridge National Laboratory researchers have estimated they could reduce fuel consumption significantly while alleviating traffic congestion.

UTK researchers used neutron probes at ORNL to confirm established fundamental chemical rules can also help understand and predict atomic movements and distortions in materials when disorder is introduced, as arrows show. Credit: Eric O’Quinn/UTK

Pauling’s Rules is the standard model used to describe atomic arrangements in ordered materials. Neutron scattering experiments at Oak Ridge National Laboratory confirmed this approach can also be used to describe highly disordered materials.

Shown here is an on-chip carbonized electrode microstructure from a scanning electron microscope. Credit: ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory and the University of Tennessee designed and demonstrated a method to make carbon-based materials that can be used as electrodes compatible with a specific semiconductor circuitry.

3D printed EMPOWER wall drawing

Oak Ridge National Laboratory researchers used additive manufacturing to build a first-of-its kind smart wall called EMPOWER.

Cars and coronavirus

Oak Ridge National Laboratory researchers have developed a machine learning model that could help predict the impact pandemics such as COVID-19 have on fuel demand in the United States.

four circle diffractometer

A UCLA-led team that discovered the first intrinsic ferromagnetic topological insulator – a quantum material that could revolutionize next-generation electronics – used neutrons at Oak Ridge National Laboratory to help verify their finding.

 Using the ASGarD mathematical framework, scientists can model and visualize the electric fields, shown as arrows, circling around magnetic fields that are colorized to represent field magnitude of a fusion plasma. Credit: David Green/ORNL

Combining expertise in physics, applied math and computing, Oak Ridge National Laboratory scientists are expanding the possibilities for simulating electromagnetic fields that underpin phenomena in materials design and telecommunications.

Map with focus on sub-saharan Africa

Researchers at Oak Ridge National Laboratory developed a method that uses machine learning to predict seasonal fire risk in Africa, where half of the world’s wildfire-related carbon emissions originate.

Colorized micrograph of lily pollen

Oak Ridge National Laboratory researchers have built a novel microscope that provides a “chemical lens” for viewing biological systems including cell membranes and biofilms.

Using the single-crystal diffractometer TOPAZ, Oak Ridge National Laboratory confirmed the exact position of deuterium atoms from selective deuteration of benzene molecules. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Scientists have found a new method to strategically add deuterium to benzene, an aromatic compound commonly found in crude oil. When applied to the active ingredient of drugs to incorporate deuterium, it could dramatically improve the drugs’ efficacy and safety and even introduce new medicines.