Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 13 Results

Scientists synthesized graphene nanoribbons (yellow) on a titanium dioxide substrate (blue). The lighter ends show magnetic states. Inset: The ends have up and down spin, ideal for creating qubits. Credit: ORNL, U.S. Dept. of Energy

An international multi-institution team of scientists has synthesized graphene nanoribbons – ultrathin strips of carbon atoms – on a titanium dioxide surface using an atomically precise method that removes a barrier for custom-designed carbon

ORNL’s Ramesh Bhave poses in his lab in March 2019. Bhave developed the Membrane Solvent Extraction process, which can be used to recover cobalt and other metals from spent lithium-ion batteries. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Momentum Technologies Inc., a Dallas, Texas-based materials science company that is focused on extracting critical metals from electronic waste, has licensed an Oak Ridge National Laboratory process for recovering cobalt and other metals from spent lithium-ion batteries.

Substituting deuterium for hydrogen makes methylammonium heavier and slows its swaying so it can interact with vibrations that remove heat, keeping charge carriers hot longer. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Led by ORNL and the University of Tennessee, Knoxville, a study of a solar-energy material with a bright future revealed a way to slow phonons, the waves that transport heat.

Researchers at Oak Ridge National Laboratory shed new light on elusive chemical processes at the liquid-liquid interface during solvent extraction of cobalt (dark blue). Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Real-time measurements captured by researchers at ORNL provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

Sergei Kalinin

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

An organic solvent and water separate and form nanoclusters on the hydrophobic and hydrophilic sections of plant material, driving the efficient deconstruction of biomass. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Scientists at ORNL used neutron scattering and supercomputing to better understand how an organic solvent and water work together to break down plant biomass, creating a pathway to significantly improve the production of renewable

Selenium atoms, represented by orange, implant in a monolayer of blue tungsten and yellow sulfur to form a Janus layer. In the background, electron microscopy confirms atomic positions. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

An ORNL team used a simple process to implant atoms precisely into the top layers of ultra-thin crystals, yielding two-sided structures with different chemical compositions.

Scientists holding 3D printed collimators

Oak Ridge National Laboratory has licensed a novel method to 3D print components used in neutron instruments for scientific research to the ExOne Company, a leading maker of binder jet 3D printing technology.

A nanobrush made by pulsed laser deposition of CeO2 and Y2O3 with dim and bright bands, respectively, is seen in cross-section with scanning transmission electron microscopy. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

A team led by the Department of Energy’s Oak Ridge National Laboratory synthesized a tiny structure with high surface area and discovered how its unique architecture drives ions across interfaces to transport energy or information.

Polymer self-assembly at the liquid-liquid interface in real time

OAK RIDGE, Tenn., Feb. 27, 2020 — Researchers at Oak Ridge National Laboratory and the University of Tennessee achieved a rare look at the inner workings of polymer self-assembly at an oil-water interface to advance materials for neuromorphic computing and bio-inspired technologies.